如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
的中点,则下列结论不成立的是( )
![]()
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.
专题:计算题.
分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;
由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;
由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;
AC不一定垂直于OE,选项D错误.
解答:解:A.∵点C是
的中点,
∴OC⊥BE,
∵AB为圆O的直径,
∴AE⊥BE,
∴OC∥AE,本选项正确;
B.∵
=
,
∴BC=CE,本选项正确;
C.∵AD为圆O的切线,
∴AD⊥OA,
∴∠DAE+∠EAB=90°,
∵∠EBA+∠EAB=90°,
∴∠DAE=∠EBA,本选项正确;
D.AC不一定垂直于OE,本选项错误,
故选D
点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| BE | AD |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com