精英家教网 > 初中数学 > 题目详情
2.如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD,已知BC=BD,AB=4,BC=2$\sqrt{3}$.
(1)求证:BD是⊙O的切线;
(2)求CD的长.

分析 (1)由AB为圆的直径,利用直径所对的圆周角为直角得到∠ACB为直角,进而得到三角形ABC为直角三角形,利用锐角三角函数定义求出sinA的值,利用特殊角的三角函数值求出∠A的度数为60度,再由OA=OC,得到三角形AOC为等边三角形,利用等边三角形的性质得到两个角为60度,进而求出∠BCD为30度,利用三角形内角和定理求出∠OBD为直角,即OB垂直于BD,即可得证;
(2)由AB为直径,求出半径为2,由BC=BD,利用等边对等角得到一对角相等,再由OC=OB得到一对角相等,等量代换得到∠D=∠OBC,再由一对公共角相等,得到三角形OCB与三角形BCD相似,由相似得比例,即可求出CD的长.

解答 解:(1)∵AB为圆O的直径,
∴∠ACB=90°,
在Rt△ABC中,∵sinA=$\frac{BC}{AB}$=$\frac{2\sqrt{3}}{4}$=$\frac{\sqrt{3}}{2}$,
∴∠A=60°,
∵AO=CO,
∴△AOC为等边三角形,
∴∠AOC=∠ACO=60°,
∴∠BCD=∠ACB-∠ACO=90°-60°=30°,
∵∠BOD=∠AOC=60°,
∴∠OBD=180°-(∠BOD+∠D)=90°,
∴OB⊥BD,
则BD为圆O的切线;

(2)∵AB为圆O的直径,且AB=4,
∴OB=OC=2,
∵BC=BD,
∴∠BCD=∠D,
∵OC=OB,
∴∠BCD=∠OBC,
∴∠D=∠OBC,
在△BCD和△OCB中,
∠D=∠OBC,∠BCD=∠OCB,
∴△BCD∽△OCB,
∴$\frac{CD}{BC}$=$\frac{BC}{OC}$,即$\frac{CD}{2\sqrt{3}}$=$\frac{2\sqrt{3}}{2}$,
则CD=6.

点评 此题考查了切线的判定,相似三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:据统计图解答下列问题:
(1)同学们一共调查了多少人?
(2)将条形统计图补充完整.
(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?
(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.
(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,⊙O的直径AB=4,∠BAC=30°,AC交⊙O于D,D是AC的中点.
(1)过点D作DE⊥BC,垂足为E,求证:直线DE是⊙O的切线;
(2)求$\widehat{BD}$与线段DE、BE围成的阴影面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,点 O是△ABC外接圆的圆心,若⊙O的半径为5,∠A=45°,则$\widehat{BC}$的长是(  )
A.$\frac{5}{8}$πB.$\frac{25}{4}$πC.$\frac{5}{4}$πD.$\frac{5}{2}$π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在平面直角坐标系中,一条直线与反比例函数y=$\frac{8}{x}$(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=$\frac{2}{x}$(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为(  )
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.关于x的一元二次方程ax2-3x+3=0有两个不等实根,则a的取值范围是(  )
A.a<$\frac{3}{4}$且a≠0B.a>-$\frac{3}{4}$且a≠0C.a>-$\frac{3}{4}$D.a<$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△ABC中,∠C=90°,sinA=$\frac{4}{5}$,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF.
(1)求证:DF为⊙O的切线;
(2)若AO=x,DF=y,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图AB∥DE,∠ABC=30°,∠BCD=80°,则∠CDE=(  )
A.20°B.50°C.60°D.100°

查看答案和解析>>

同步练习册答案