精英家教网 > 初中数学 > 题目详情
先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

则计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 
分析:先由已知等式得出规律:
1
n(n+1)
=
1
n
-
1
n+1
,然后根据这个规律作答.
解答:解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6

=1-
1
2
+
1
2
-
1
3
+…+
1
5
-
1
6

=1-
1
6

=
5
6
点评:能够通过观察得出规律:
1
n(n+1)
=
1
n
-
1
n+1
是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先观察下列等式,再回答问题:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根据上面三个等式提供的信息,请猜想
1+
1
42
+
1
52
的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请先阅读下列一组内容,然后解答问题:
先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

将以上等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你发现的规律解答下列问题:
(1)猜想并写出:
1
n(n-1)
=
1
n-1
-
1
n
1
n-1
-
1
n

(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=
2010
2011
2010
2011

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
;   
1
2×3
=
1
2
-
1
3
;   
1
3×4
=
1
3
-
1
4

将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)计算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=
9
10
9
10

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
;(用含有n的式子表示)
(3)探究并计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009

查看答案和解析>>

科目:初中数学 来源:江津区 题型:填空题

先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

则计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=______.

查看答案和解析>>

同步练习册答案