精英家教网 > 初中数学 > 题目详情
20.若x+y=2,xy=-5,求下列各式的值:
(1)$\frac{1}{x}$+$\frac{1}{y}$;
(2)$\frac{x}{y}$+$\frac{y}{x}$.

分析 (1)先通分,然后利用整体代入的方法计算;
(2)先通分,再利用完全平方公式变形得到$\frac{(x+y)^{2}-2xy}{xy}$,然后利用整体代入的方法计算.

解答 解:(1)原式=$\frac{x+y}{xy}$=$\frac{2}{-5}$=-$\frac{2}{5}$;
(2)原式=$\frac{{x}^{2}+{y}^{2}}{xy}$=$\frac{(x+y)^{2}-2xy}{xy}$=$\frac{{2}^{2}-2×(-5)}{-5}$=-$\frac{14}{5}$.

点评 本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.计算:$\frac{4}{1×3}+\frac{4}{3×5}+\frac{4}{5×7}+…+\frac{4}{19×21}$=$\frac{20}{21}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.x从0开始逐渐增大时,函数y=2x+6和y=5x-2哪一个的值先到达10?哪一个的值先到达20?这说明了什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.甲、乙两只渔船同时从一渔港(A)出发,甲船向正东方向航行,速度是8海里/小时,乙船向正南方向航行,速度是6海里/小时,2小时后,甲船到达B处,乙船到达C处.
(1)此时甲、乙两渔船相距多少海里?
(2)如果甲、乙两渔船保持原来的航向和航速继续航行,那么出发后多少小时两船相距30海里?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.“比a的$\frac{3}{2}$倍大1的数”用式子表示为(  )
A.$\frac{2}{3}$a+1B.$\frac{3}{2}$a+1C.$\frac{5}{2}$aD.$\frac{3}{2}$a-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,点0在线段AD上,A0=AB,DO=DC,且OB⊥OC.求证:AB∥DC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.求下列各数的立方根:
(1)8;
(2)-0.512;
(3)±2$\frac{10}{27}$;
(4)$\sqrt{16}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知x,y满足$\frac{x}{y}$=5,求分式$\frac{{x}^{2}-2xy+3{y}^{2}}{4{x}^{2}+5xy-6{y}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.用单项式表示下列各量,并说出它的系数和次数:
(1)原产量n吨,增产25%之后的产量;
(2)x的平方与y的积的3$\frac{1}{2}$;
(3)底面积为S cm2,高为h cm的圆锥的体积.

查看答案和解析>>

同步练习册答案