精英家教网 > 初中数学 > 题目详情

已知G是△ABC的重心,过G作EF∥BC且与AB、AC分别交于E、F两点,则EF:BC的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:如果连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3.
解答:解:如图,连接AG并延长,交BC于点P.
∵G为△ABC的重心,
∴AG=2GP,
∴AG:AP=2:3,
∵EF过点G且EF∥BC,
∴△AGF∽△APC,
∴AF:AC=AG:AP=2:3.
又∵EF∥BC,
∴△AEF∽△ABC,
∴EF:BC=AF:AC=2:3.
故选:B.
点评:此题主要考查了三角形的重心的性质,相似三角形的判定及性质.
三角形三边的中线相交于一点,这点叫做三角形的重心.重心到顶点的距离等于它到对边中点距离的两倍.
平行于三角形一边的直线截其它两边,所得三角形与原三角形相似.
相似三角形的三边对应成比例.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

    已知直线与x轴、y轴分别交干A、B两点.  ∠ABC=60°.BC与x轴交于点C.

(1)试确定直线BC的解析式.

(2)若动点P从A点山发沿AC向点C运动(不与A、C重舍).同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒l个单位长度. 动点Q的运动速度是每杪2个单位长度.设△APQ的面积为S.P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下.当△APQ的面积最大时.y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标:

    若不存在.请说明理由.

查看答案和解析>>

同步练习册答案