精英家教网 > 初中数学 > 题目详情
阅读下面函数,并根据你所获得的信息回答问题:
(1)折线OAB表示某个实际问题的函数图像,请你编写一道符合该图像意义的应用题。
(2)根据你给出的应用题分别指出x轴、y轴所表示的意义,并写出AB两点的坐标。
(3)求出图象OAB的函数解析式,并注明自变量的取值范围。
解:(1)某医药公司发明了一种新药,在临床实验的过程中,发现成人在服药2小时后,血液中含药量最大,达每升6毫克,服药后6小时完全消退。
(2)x轴代表时间,y轴代表血液中含药量 A(2,6),B(6,0)
(3)解析式为
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料,并解答问题:
问题1:已知正数,有下列命题若a+b=2,则
ab
≤1
若a+b=3,则
ab
3
2
若a+b=6,则
ab
≤3

根据以上三个命题所提供的规律猜想:若a+b=9,则
ab
 

以上规律可表示为a+b
 
2
ab

问题2:建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元.
(1)设池长为x米,水池总造价为y(元),求y和x的函数关系式;
(2)应用“问题1”题中的规律,求水池的最低造价.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,并解决后面给出的问题
例.给定二次函数y=(x-1)2+1,当t≤x≤t+1时,求y的函数值的最小值.
解:函数y=(x-1)2+1,其对称轴方程为x=1,顶点坐标为(1,1),图象开口向上.下面分类讨论:

(1)如图1所示,若顶点横坐标在范围t≤x≤t+1左侧时,即有1<t.此时y随x的增大而增大,当x=t时,函数取得最小值,y最小值=(t-1)2+1
(2)如图2所示,若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值=1;
(3)如图3所示,若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,解不等式即得t<0.此时Y随X的增大而减小,当x=t+1时,函数取得最小值,y最小值=t2+1
综上讨论,当1<t时,函数取得最小值,y最小值=(t-1)2+1
此时当0≤t≤1时,函数取得最小值,y最小值=1.
当t<0时,函数取得最小值,y最小值=t2+1
根据上述材料,完成下列问题:
问题:求函数y=x2+2x+3在t≤x≤t+2时的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面的材料,并解答问题:
问题1:已知正数,有下列命题数学公式数学公式数学公式
根据以上三个命题所提供的规律猜想:数学公式______,
以上规律可表示为a+b______数学公式
问题2:建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元.
(1)设池长为x米,水池总造价为y(元),求y和x的函数关系式;
(2)应用“问题1”题中的规律,求水池的最低造价.

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

阅读下面的材料,并解答问题:
(1)问题1:已知正数,有下列命题
若a+b=2,则
若a+b=3,则
若a+b=6,则
根据以上三个命题所提供的规律猜想:若a+b=9,则≤______;
以上规律可表示为:a+b______
(2)问题2:建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元。
①设池长为x米,水池总造价为y(元),求y和x的函数关系式;
②利用“问题1”题中得出的规律和结论,求水池的最低造价。

查看答案和解析>>

同步练习册答案