精英家教网 > 初中数学 > 题目详情
7.化简:
(1)5a3-2a2+a-2(a3-3a2)-1;
(2)x-(5x-2y)+(x-2y);
(3)-$\frac{1}{2}$(2x2+6x-4)-4($\frac{1}{4}$x2+1-x).

分析 (1)去掉括号,依据整式加减法的运算法则对整式进行运算即可得出结论;
(2)去掉括号,依据整式加减法的运算法则对整式进行运算即可得出结论;
(4)去掉括号,依据整式加减法的运算法则对整式进行运算即可得出结论.

解答 解:(1)原式=5a3-2a2+a-2a3+6a2-1,
=(5-2)a3+(6-2)a2+a-1,
=3a3+4a2+a-1.
(2)原式=x-5x+2y+x-2y,
=(1-5+1)x+(2-2)y,
=-3x.
(3)原式=-x2-3x+2-x2-4+4x,
=(-1-1)x2+(4-3)x+2-4,
=-2x2+x-2.

点评 本题考查了整式的加减,解题的关键是利用整式的运算法则对整式进行化简.本题属于基础题,难度不大,解决该题型题目时,依据整式的加减运算法则对整式进行化简是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.已知:⊙O的半径是3,AB是⊙O的一条直径,CD是弦,且CD∥AB.若∠DAC=20°,则图中阴影部分的面积为π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.为了迎接“国庆节”用花盆摆成下列图案,第1组1个花盆,第2组3个花盆,第3组6个花盆,第4组10个花盆…则第n组有$\frac{n(n+1)}{2}$个花盆.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:($\frac{{x}^{2}+4}{x}$-4)÷$\frac{{x}^{2}-4}{{x}^{2}+2x}$,其中x为(x-2)2-2x(x-2)=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:
(1)(3x3y-x2y2+$\frac{1}{2}$x2y)÷(-$\frac{1}{2}$x2y),其中x=-2,y=3;
(2)[(x-y)2+(x+y)•(x-y)]÷2x,其中x=3,y=-1.5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.观察下面计算过程:
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$) (1-$\frac{1}{3}$)(1+$\frac{1}{3}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$=$\frac{1}{2}$×$\frac{4}{3}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$=$\frac{1}{2}$×$\frac{5}{4}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×$\frac{4}{5}$×$\frac{6}{5}$=$\frac{1}{2}$×$\frac{6}{5}$;…
你发现了什么规律?用含n的式子表示这个规律,并用你发现的规律直接写出
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{2}^{2}}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:(-$\frac{5}{3}$)a2bc•$\frac{3}{5}$ab2c•(-$\frac{7}{8}$abc2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简.再求值:
($\frac{1}{2}$x+$\frac{1}{3}$y)($\frac{1}{3}$y-$\frac{1}{2}$x)+$\frac{1}{2}$x($\frac{1}{2}$x-y),其中x=4,y=6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.小用火柴棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴棍,第3个图形用了18根火柴棍.依照此规律,若第n个图形用了70根火柴棍,则n的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案