精英家教网 > 初中数学 > 题目详情

【题目】已知函数f(x)=lnx+x2﹣2ax+1(a为常数).
(1)讨论函数f(x)的单调性;
(2)若对任意的 ,都存在x0∈(0,1]使得不等式 成立,求实数m的取值范围.

【答案】
(1)解:由f(x)=lnx+x2﹣2ax+1,得

令h(x)=2x2﹣2ax+1.

①当a≤0时,h(x)>0,则f'(x)>0成立,

△=4a2﹣8,当 时,△≤0,则2x2﹣2ax+1≥0,h(x)≥0,即f'(x)≥0恒成立,

∴当 时,f'(x)≥0,f(x)在(0,+∞)上单调递增;

②当 时,由2x2﹣2ax+10≥0,得

由2x2﹣2ax+10<0,得

∴f(x)在 上单调递增,在 单调递减;


(2)解:∵

∴f'(x)>0,f(x)在(0,1]单调递增,f(x)max=f(1)=2﹣2a,

存在x0∈(0,1]使得不等式 成立,

即2﹣2a+lna>m(a﹣a2),

∵任意的 ,∴a﹣a2<0,即 恒成立,

,则

∵任意的

是增函数,

恒成立,

∴实数m的取值范围


【解析】(1)求出原函数的导函数,当a≤0时,导函数恒大于0,然后利用二次函数的判别式对a分类讨论求出导函数在不同区间内的符号,得到原函数的单调性;(2)由(1)知, 时,函数f(x)在(0,1]上单调递增,求出函数在(0,1]上的最大值2﹣2a,把存在x0∈(0,1]使得不等式 成立转化为2﹣2a+lna>m(a﹣a2),得到 恒成立,构造函数 ,求导可知为增函数,得其最大值,则实数m的取值范围可求.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD= ,DC=SD=2,点M在侧棱SC上,∠ABM=60°.
(Ⅰ)证明:M是侧棱SC的中点;
(Ⅱ)求二面角S﹣AM﹣B的余弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为 . (Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;
(Ⅱ)若曲线C经过伸缩变换 后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是单位1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:

(1)在直角坐标系中画出ABC关于x轴的对称图形A1B1C1

(2)在直角坐标系中将ABC向左平移4个单位长度得A2B2C2,画出A2B2C2

(3)若点D(m,n)在ABC的边AC上,请分别写出A1B1C1A2B2C2 的对应点D1和D2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= sin(2x+φ)+cos(2x+φ)为偶函数,且在[0, ]上是增函数,则φ的一个可能值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,△ABC的周长为12,AB,AC边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.
(1)求点M的轨迹方程;
(2)设点M的轨迹为曲线T,直线MF1与曲线T另一个交点为N,线段MF2中点为E,记S=S +S ,求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论: ① = ;② = ;③ ;④ =
其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案