精英家教网 > 初中数学 > 题目详情
如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,Pn(n,Pn)….作x轴的垂线,垂足分别为A1,A2…An …,连接A1P2,A2P3,…,An-1Pn,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点Bn的纵坐标是    .(结果用含n代数式表示)
【答案】分析:根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是y4+y3,据此可以推知点Bn的纵坐标是:yn+1+yn=+=
解答:解:∵点P1(1,y1),P2(2,y2)在反比例函数的图象上,
∴y1=3,y2=
∴P1A1=y1=3;
又∵四边形A1P1B1P2,是平行四边形,
∴P1A1=B1P2=3,P1A1∥B1P2
∴点B1的纵坐标是:y2+y1=+3,即点B1的纵坐标是
同理求得,点B2的纵坐标是:y3+y2=1+=
点B3的纵坐标是:y4+y3=+1=

点Bn的纵坐标是:yn+1+yn=+=
故答案是:
点评:本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点Bn的纵坐标yn+1+yn
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数的图象与反比例函数y1=- 
3
x
(x<0)
的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y2=
a
x
(x>0)
的图象与y1=-
3
x
(x<0)
的图象关于y轴对称,在y2=
a
x
(x>0)
的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数y=
kx
(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数数学公式(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)

查看答案和解析>>

科目:初中数学 来源:2005年江苏省镇江中学高中单独招生考试数学试卷(解析版) 题型:解答题

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)

查看答案和解析>>

科目:初中数学 来源:江苏中考真题 题型:填空题

如图,已知反比例函数点A在y轴的正半轴上,过点A作直线
BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB。若△BOC的面积为,AC:AB=2:3,则k1=(    ),k2=(    )。

查看答案和解析>>

同步练习册答案