精英家教网 > 初中数学 > 题目详情
3.如图,直线AB对应的函数表达式是(  )
A.y=-$\frac{3}{2}$x+2B.y=$\frac{3}{2}$x+3C.y=-$\frac{2}{3}$x+2D.y=$\frac{2}{3}$x+2

分析 根据点A、B的坐标,利用待定系数法求出直线AB对应的函数表达式,此题得解.

解答 解:设直线AB对应的函数表达式为y=kx+b(k≠0),
将A(0,2)、B(3,0)代入y=kx+b中,
$\left\{\begin{array}{l}{b=2}\\{3k+b=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-\frac{2}{3}}\\{b=2}\end{array}\right.$,
∴直线AB对应的函数表达式为y=-$\frac{2}{3}$x+2.
故选C.

点评 本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求函数解析式的步骤及方法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,∠CAB=∠DBA,再添加一个条件不一定能判定△ABC≌△BAD的是(  )
A.∠DAB=∠CBAB.AD=BCC.AC=BDD.∠C=∠D

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在平面直角坐标系中,对于任意一点P(x,y),我们做以下规定:d(P)=|x|+|y|,称d(P)为点P的坐标距离.
(1)已知:点A(3,-4),求点A的坐标距离d(A)的值.
(2)如图,四边形OABC为矩形,点A,B在第一象限,且OC:OA=1:2.
①求证:d(A)=d(C)×2
②若OC=2,且满足d(A)+d(C)=d(B)+2,求点B坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:(1)$\sqrt{\frac{121}{36}}$;
(2)$\sqrt{1\frac{1}{9}}$
(3)$\sqrt{\frac{81{x}^{2}}{25{y}^{2}}}$(x≥0,y>0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.服装厂生产某品牌的T恤衫,每件成本是10元,根据调查,服装厂以批发单价13元给经销商,经销商愿意经销1000件,并且表示每件降价0.1元,愿意多经销100件,所以服装厂打算即不亏本,又要低于13元的单价批发给经销商.
(1)求服装厂获得利润y(元)与批发单价x(元)之间的函数关系式,并写出自变量x的取值范围;
(2)服装厂批发单价是多少时可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.分解因式:
(1)(x2+y22-4x2y2
(2)a2(b-2)-a(2-b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,DE,BC被那条直线所截,得到哪些同位角,内错角或同旁内角?请一一指出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A、B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.
(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;
(2)在图1中,连接AE交BC于M,求$\frac{AD}{BM}$的值;
(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH,当点D在边AB上运动时,探究线段HE,HG与DG之间的数量关系,并证明你的结伦.

查看答案和解析>>

同步练习册答案