精英家教网 > 初中数学 > 题目详情
如图,在?ABCD中,BC=4,AB=2,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求AC的长.
分析:(1)由在?ABCD中,点E、F分别是BC、AD的中点,易证得AB=CD,∠B=∠D,BE=DF,继而由SAS证得:△ABE≌△CDF;
(2)易证得△ABE是等边三角形,则可得∠B=60°,∠ACE=30°,继而可求得∠BAE的度数,然后由勾股定理求得AC的长.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,AD=BC,
∵点E、F分别是BC、AD的中点,
∴DF=
1
2
AD,BE=
1
2
BC,
∴DF=BE,
在△ABE和△CDF中,
AB=CD
∠B=∠D
BE=DF

∴△ABE≌△CDF(SAS);

(2)解:连接AC,
∵在?ABCD中,BC=4,AB=2,点E、F分别是BC、AD的中点,
∴BE=CE=2,
∴AB=BE,
∵四边形AECF为菱形,
∴AE=EC,AE∥CF,
∴AB=BE=AE,
∴∠B=∠AEB=60°,
∴∠ECF=⊙AEB=60°,
∴∠ACE=
1
2
∠ECF=30°,
∴∠BAC=180°-∠B-∠ACE=90°,
∴AC=
BC2-AB2
=2
3
点评:此题考查了平行四边形的性质、菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案