精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,矩形ABCD的边AB在x轴上,点A、B的横坐标分别为a+2与2a﹣5,且关于y轴对称,BC的长为3,且点C在第三象限.
(1)求顶点A、C的坐标;
(2)若y=kx+b是经过点B,且与AC平行的一条直线,试确定它的解析式.

(1)A(3,0),C(﹣3,﹣3);(2)

解析试题分析:(1)根据关于y轴对称的点的坐标特征得到a+2+2a﹣5=0,解得a=1,则得到A点坐标为(3,0),B定坐标为(﹣3,0),然后利用矩形的性质和BC=3可得到C点坐标;(2)先利用待定系数法确定直线AC的解析式,然后利用一次函数图象与几何变换求解.
试题解析:(1)∵点A与点B关于y轴对称,
∴a+2+2a﹣5=0,解得a=1,
∴A点坐标为(3,0),B定坐标为(﹣3,0),
∵矩形ABCD的边BC=3,
∴C点坐标为(﹣3,﹣3);
(2)设直线AC的解析式为y=mx+n,
把A(3,0)、(﹣3,﹣3)代入得
解得
∴直线AC的解析式为
∵把直线AC向上平移3个单位得到过B点的直线,
∴经过点B,且与AC平行的直线解析式为
考点:1.待定系数法求一次函数解析式;2.一次函数图象与几何变换

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为     

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线分别交x轴、y轴于A、B两点,线段AB的垂直平分线分别交x轴于点.求点C的坐标并求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=﹣x+5分别与x轴、y轴交于A、B两点.
(1)求A、B两点的坐标;
(2)已知点C坐标为(4,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标;
(3)请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在平面直角坐标系中作出图形,并求出点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图一次函数y=x﹣3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示。

(1)观察图象,直接写出日销售量的最大值;
(2)求李明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如表,给出A、B两种上网宽带的收费方式:

收费方式
月使用费/元
包月上网时间/小时
超时费/(元/分)
A
30
20
0.05
B
60
不限时
 
 
假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某校校长暑假带领该市市级“三好学生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内的全部按全票价的6折优惠”(即按全票的60%收费).若全票价为240元/人,
(1)设学生人数为x,甲旅行社收费为y,乙旅行社收费为y,分别计算两家旅行社的收费(建立表达式).
(2)当学生人数为多少时,两家旅行社的收费一样?
(3)就学生人数讨论哪家旅行社更优惠?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

查看答案和解析>>

同步练习册答案