精英家教网 > 初中数学 > 题目详情
如图,点C在线段AB上,AC=10cm,CB=8cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若点C为线段AB上任一点,满足AC+CB=a(cm),M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由.
(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.
分析:(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度;
(2)与(1)同理,先用AC、BC表示出MC、CN,MN的长度就等于AC与BC长度和的一半;
(3)根据中点定义可得:AM=MC=
1
2
AC,CN=BN=
1
2
CB,再根据线段之间的和差关系进行转化即可.
解答:解:(1)∵点M、N分别是AC、BC的中点,
∴CM=
1
2
AC=5cm,CN=
1
2
BC=4cm,
∴MN=CM+CN=5+4=9cm;

(2)MN=
1
2
a(cm),
理由如下:
同(1)可得CM=
1
2
AC,CN=
1
2
BC,
∴MN=CM+CN=
1
2
AC+
1
2
BC=
1
2
(AC+BC)=
1
2
a(cm).

(3)MN=
1
2
b(cm),
如图所示:
根据题意得:AC-CB=b,
AM=MC=
1
2
AC,CN=BN=
1
2
CB,
∴NM=BM+BN=(MC-BC)+
1
2
BC=(
1
2
AC-BC)+
1
2
BC=
1
2
AC+(-BC+
1
2
BC)=
1
2
AC-
1
2
BC=
1
2
(AC-BC)=
1
2
b(cm).
点评:此题主要考查了线段的中点,关键是准确把握线段之间的倍数关系,理清线段之间的和差关系,进行等量代换即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.精英家教网
(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C在线段AB上,点M、N分别是AC、BC的中点.精英家教网
(1)若AC=9cm,CB=6cm,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?
(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度.精英家教网
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图,点C在线段AB上,AC=18cm,BC=6cm,点M、N分别是AC、BC的中点,求MN的长;
(2)把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其它条件不变,则MN的长是多少?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点M在线段AB上,MB=4cm,NB=9cm,且N是AM的中点,则AB=
14
14
cm.

查看答案和解析>>

同步练习册答案