精英家教网 > 初中数学 > 题目详情
(2002•盐城)已知:如图,在平面直角坐标系中,过点A(0,2)的直线AB与以坐标原点为圆心,为半径的圆相切于点C,且与x轴的负半轴相交于点B.
(1)求∠BAO的度数;
(2)求直线AB的解析式;
(3)若一抛物线的顶点在直线AB上,且抛物线的顶点和它与x轴的两个交点构成斜边长为2的直角三角形,求此抛物线的解析式.

【答案】分析:(1)已知了A点的坐标,即可得出OA的长,由于AB与圆O相切,因此OC⊥AB,可在直角三角形OAC中,根据OA的长和圆的半径求出∠BAO的度数.
(2)已知了∠BAO的度数和OA的长,可在直角三角形BOA中用三角函数求出OB的长,即可得出B点的坐标,进而可用待定系数法求出直线AB的解析式.
(3)根据抛物线的对称性可知,抛物线的顶点和它与x轴的两个交点构成的直角三角形应该是等腰直角三角形,已知了这个等腰直角三角形的斜边长为2,那么斜边上的高应该是1,即抛物线顶点的纵坐标的绝对值为1.因此可根据直线AB的解析式设出抛物线的顶点坐标,然后根据抛物线顶点纵坐标绝对值为1求出抛物线的顶点坐标,因此来求出抛物线的解析式.
解答:解:(1)∵AB与⊙O相切
∴OC⊥AB
在直角三角形OAC中,OC=,OA=2,
∴sin∠BAO==
∴∠BAO=60°.

(2)在直角三角形BAO中,
∵∠BAO=60°,OA=2;
∴OB=2
∴B(-2,0).
设直线AB的解析式为y=kx+2.
则有:-2k+2=0,k=
∴y=x+2.

(3)设抛物线的顶点坐标为(x,x+2).
∴|1|=x+2
①1=x+2,x=-
∴抛物线顶点坐标为(-,1)
设抛物线的解析式为y=a(x+2+1,
∵抛物线的对称轴为x=-,且与x轴两交点的距离为2,
因此可得出两交点坐标为(-1-,0)和(1-,0)
代入抛物线的解析式中可得:a=-1
∴抛物线的解析式为y=-(x+2+1.
②-1=x+2,x=-3
∴抛物线顶点坐标为(-3,-1)
设抛物线的解析式为y=a(x+32-1,
∵抛物线的对称轴为x=-3,且与x轴两交点的距离为2,
因此可得出两交点坐标为(-1-3,0)和(1-3,0)
代入抛物线的解析式中可得:a=1
∴抛物线的解析式为y=(x+32-1.
综上所述,抛物线的解析式为:y=-(x+2+1和y=(x+32-1.
点评:本题考查了解直角三角形的应用、切线的性质、一次函数解析式的确定以及二次函数的相关知识等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2002年江苏省盐城市中考数学试卷(解析版) 题型:解答题

(2002•盐城)已知:如图,在平面直角坐标系中,过点A(0,2)的直线AB与以坐标原点为圆心,为半径的圆相切于点C,且与x轴的负半轴相交于点B.
(1)求∠BAO的度数;
(2)求直线AB的解析式;
(3)若一抛物线的顶点在直线AB上,且抛物线的顶点和它与x轴的两个交点构成斜边长为2的直角三角形,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2002•盐城)已知:如图,在梯形ABCD中,AB∥CD,E、F为AB上两点,且AE=BF,DE=CF,EF≠CD.
求证:AD=BC.

查看答案和解析>>

科目:初中数学 来源:2002年江苏省盐城市中考数学试卷(解析版) 题型:选择题

(2002•盐城)已知α为锐角,且cos(90°-α)=,则α的度数是( )
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中数学 来源:2002年江苏省盐城市中考数学试卷(解析版) 题型:填空题

(2002•盐城)已知:如图,圆内接四边形ABCD中,∠BAD=65°,则∠BCD=    度.

查看答案和解析>>

同步练习册答案