精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,点E、F分别为AD、AB的中点,连接DF、CE,DF与CE交于点H,则下列结论:①DF⊥CE;②DF=CE;③数学公式=数学公式;④数学公式=数学公式.其中正确结论的序号有________.

①②③
分析:利用正方形的性质和已知条件可判定Rt△DAF≌Rt△DCE,有全等可判断①②是否正确,再利用相似三角形的判定方法证明△DHE∽△DAF,由相似三角形的性质可判断③④是否正确,进而可知正确结论的序号.
解答:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠A=∠B=∠ADC=∠DCB=90°,
∵点E、F分别为AD、AB的中点,
∴DE=AE,
∴Rt△DAF≌Rt△DCE,
∴DF=CE,故②正确;
∠DEC=∠DFA,
∵∠DFA+∠FDA=90°,
∴∠DEC+∠FDA=90°,
∴∠DHE=90°,
即DF⊥CE,故①正确;
∵∠EDH=∠FDA,
∠A=∠DHE=90°,
∴△DHE∽△DAF,

∵AB=BC=CD=DA,DF=CE,
,故③正确;

,故④不正确.
故答案为①②③.
点评:本题考查了正方形的性质:四条边相等,四个角都是直角和全等三角形的判定以及全等三角形的性质;同时还考查了相似三角形的判定以及相似三角形的性质;难度不大,综合性不小.是一道考查学生基本能力不错的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案