精英家教网 > 初中数学 > 题目详情
如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3

(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;
(2)设=t,试用t表示EF的长;
(3)在(2)的条件下,当t为何值时,S22=4S1S3
解:(1)∵S1=AD•AF=x,S3=BC•BF=×2×(3﹣x)=3﹣x,
(0<x<3)。
∴当x= 时,S1S3的最大值为
(2)如图,作DM⊥BC,垂足为M,DM与EF交与点N,

=t,∴AF=tFB。
∵△DNE∽△DMC ,BM=MC=AD=1,
。∴NE=
∴EF=FN+NE=1+
(3)∵AB=AF+FB=(t+1)FB=3,∴FB=。∴AF=tFB=
∴S1=AD•AF=×=,S3=BC•FB=×2×=
S2=AB•FE=×3×=
∴S1S3=,S22=
=4×,即4t2﹣4t+1=0,解得t=
∴当t=时,S22=4S1S3

试题分析:(1)直接根据三角形的面积公式解答即可。
(2)作DM⊥BC,垂足为M,DM与EF交与点N,根据=t,可知AF=tFB,再由△DNE∽△DMC 和BM=MC=AD=1可得出,所以NE=,根据EF=FN+NE即可得出结论。
(3)根据AB=AF+FB=(t+1)FB=3,可得出FB=,故可得出AF=tFB=,根据三角形的面积公式可用t表示出S1,S3,S2,由s22=4S1S3.即可得出t的值。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1。求出点M的坐标并证明你的结论。

解:M(      
证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=   度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(   ),∠BDM=∠BMD(同理),
∴∠ACM= (180°-   ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM与△BDM中,
∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川眉山3分)如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个命题中,属于真命题的是
A.若,则a=m
B.若a>b,则am>bm
C.两个等腰三角形必定相似
D.位似图形一定是相似图形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件   ,使△ABC∽△ACD.(只填一个即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,则A、B两点的距离为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

王大爷家有一块梯形形状土地,如图,AD∥BC,对角线AD,BC相交于点O,王大爷量得AD长3米,BC长9米,王大爷准备在△AOD处种大白菜,那么王大爷种大白菜的面积与整个土地的面积比为(   )
A.1:14B.3:14C.1:16D.3:16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中, AB=4,BC=2,点P是射线DA上的一动点,DE⊥CP,垂足为E,EF⊥BE与射线DC交于点F.

(1)若点P在边DA上(与点D、点A不重合).
①求证:△DEF∽△CEB;
②设AP=x,DF=y,求的函数关系式,并写出的取值范围;
(2)当△EFC与△BEC面积之比为3︰16时,线段AP的长为多少?(直接写出答案,不必说明理由).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四组数中,能组成比例的是(   ).
A.B.
C.D.

查看答案和解析>>

同步练习册答案