精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.
(1)求这条抛物线对应的函数关系式;
(2)连接BD,试判断BD与AD的位置关系,并说明理由;
(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.
分析:(1)根据△ABE与△ABC的面积之比为3:2,可得出OC与E点纵坐标的比为3:2,因此C点的坐标为(0,4).D点坐标为(0,2).然后可求出直线AD的解析式,进而可求出A点坐标.根据A,C,E三点坐标即可求出抛物线的解析式;
(2)应该是垂直关系.可根据(1)中得出的抛物线的解析式求出B点的坐标,然后通过证△ABD和△ADO相似即可得出∠ADB=90°,也可利用勾股定理来求证,答案不唯一;
(3)由于以A、B、N为顶点的三角形与△ABM相似,且M、N不重合,而这两个三角形又有一个公共角,因此只有一种情况,即△ANB∽△ABM,可得出AN:AB=AB:AM,由此可求出AN的长,即可求出N点的坐标.
(也可通过证△AEB∽△ABM,得出E,N重合,由此可求出N点的坐标).
解答:解:(1)根据△ABE与△ABC的面积之比为3:2及E(2,6),可得C(0,4).
∴D(0,2).
由D(0,2)、E(2,6)可得直线AD所对应的函数关系式为y=2x+2.
当y=0时,2x+2=0,
解得x=-1.
∴A(-1,0).
由A(-1,0)、C(0,4)、E(2,6)求得抛物线对应的函数关系式为y=-x2+3x+4.

(2)BD⊥AD.
求得B(4,0),通过相似或勾股定理逆定理证得∠BDA=90°,
即BD⊥AD.

(3)法1:求得M(
2
3
10
3
),AM=
5
3
5

由△ANB∽△ABM,得
AN
AB
=
AB
AM
,即AB2=AM•AN,
∴52=
5
3
5
•AN,
解得AN=3
5

从而求得N(2,6).
法2:由OB=OC=4及∠BOC=90°得∠ABC=45°.
由BD⊥AD及BD=DE=2
5
得∠AEB=45°.
∴△AEB∽△ABM,即点E符合条件,
∴N(2,6).
点评:考查二次函数解析式的确定、图形的面积求法、函数图象交点等知识及综合应用知识、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案