如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。
【小题1】求证:∠DAC=∠BAC;
【小题2】若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,猜想:此时与∠DAC相等的角是哪一个?并证明你的结论。![]()
![]()
【小题1】连结OC,得OC∥AD。
【小题2】连结BG,得∠ACD=∠B。
解析(1)连OC,构建平行线OC∥AD.然后由两直线平行,内错角相等推知∠OCA=∠DAC,再根据等腰三角形OAC两个底角相等的性质知,∠BAC=∠OCA,所以根据等量代换易证明:∠DAC=∠BAC;
(2)根据(2)的思路,可以直接写出答案.
证明:(1)连OC,
则OC=OA,
∴∠BAC=∠OCA (1分)
∵EF切⊙O于C,
∴OC⊥EF (2分)
∵AD⊥EF,
∴OC∥AD (3分)
∴∠OCA=∠DAC (4分)
∴∠DAC=∠BAC (5分)
(2)∠BAG=∠DAC,理由如下:
连接BC,
∵AB为⊙O的直径,
∴∠BCA=90°,∠B+∠BAC=90°,
∵∠AGD+∠GAD=90°,
又∵∠B=∠AGD,
∴∠BAC=∠GAD;
即∠BAG+∠GAC=∠GAC+∠DAC,
∴∠BAG=∠DAC. (12分)![]()
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com