精英家教网 > 初中数学 > 题目详情

如图,已知在△ABC中,AB=6,AC=数学公式,∠B=60°.求△ABC的面积.

解:作AH⊥BC,垂足为点H.
在Rt△ABH中,
∵∠B=60°,AB=6,
∴BH=3,
在Rt△ACH中,
∵AC=

∴BC=8,
∴S△ABC=
分析:作AH⊥BC,垂足为点H,在Rt△ABH中,利用∠B=60°先求出AH及BH的长,然后在Rt△ACH中利用勾股定理求出CH的长,从而根据三角形的面积=BC•AH可得出答案.
点评:本题考查了三角形的面积及勾股定理的应用,对于本题应将所求三角形的面积转化到球线段BC的长度及线段AH的长度上来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案