精英家教网 > 初中数学 > 题目详情

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求∠P的度数;
(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.

(1)证明:∵OA=OC,∴∠A=∠ACO
∵∠COB=2∠A,∠COB=2∠PCB
∴∠A=∠ACO=∠PCB
∵AB是⊙O的直径
∴∠ACO+∠OCB=90°
∴∠PCB+∠OCB=90°,即OC⊥CP
∵OC是⊙O的半径
∴PC是⊙O的切线

(2)解:∵PC=AC,∴∠A=∠P
∴∠A=∠ACO=∠P
∵∠A+∠ACO+∠PCO+∠P=180°
∴3∠P=90°
∴∠P=30°

(3)解:∵点M是半圆O的中点,
∴CM是角平分线,
∴∠BCM=45°
由(2)知∠BMC=∠A=∠P=30°,∴BC=AB=2
作BD⊥CM于D,
∴CD=BD=
∴DM=
∴CM=
∴S△BCM=
∵∠BOC=2∠A=60°,∴弓形BmC的面积=
∴线段BM、CM及弧BC所围成的图形面积为
(注:其它解法,请参照给分)
分析:(1)由OA=OC可以得到∠A=∠ACO,而∠COB=2∠A,∠COB=2∠PCB,由此得到∠A=∠ACO=∠PCB,又AB是⊙O的直径,所以∠ACO+∠OCB=90°接着可以推出即OC⊥CP,然后就可以证明PC是⊙O的切线;
(2)由PC=AC得到∠A=∠P,接着得到∠A=∠ACO=∠P,而∠A+∠ACO+∠PCO+∠P=180°,利用这个等式和已知条件即可取出∠P;
(3)由M是半圆O的中点得到∠BCM=45°,由(2)知∠BMC=∠A=∠P=30°,这样可以求出BC的长度,作BD⊥CM于D,利用等腰直角三角形的性质可以分别求出CD,DM,CM,也就可以求出S△BCM,而∠BOC=2∠A=60°,这样也可以求出弓形BmC的面积,最后就可以求出线段BM、CM及弧BC所围成的图形面积.
点评:本题考查切线的性质和判定及圆周角定理的综合运用,综合性比较强,对于学生的能力要求很高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案