精英家教网 > 初中数学 > 题目详情
(2013•深圳)如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.
分析:根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.
解答:解:∵小刚身高1.6米,测得其影长为2.4米,
∴8米高旗杆DE的影子为:12m,
∵测得EG的长为3米,HF的长为1米,
∴GH=12-3-1=8(m),
∴GM=MH=4m.
如图,设小桥的圆心为O,连接OM、OG.
设小桥所在圆的半径为r,
∵MN=2m,
∴OM=(r-2)m.
在Rt△OGM中,由勾股定理得:
∴OG2=OM2+42
∴r2=(r-2)2+16,
解得:r=5,
答:小桥所在圆的半径为5m.
点评:此题主要考查了垂径定理以及勾股定理的应用,根据已知得出关于r的等式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•深圳)如图,是轴对称图形但不是中心对称图形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m为何值时,△OAB面积最大?最大值是多少?
(2)如图2,在(1)的条件下,函数y=
k
x
(k>0)
的图象与直线AB相交于C、D两点,若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

查看答案和解析>>

同步练习册答案