精英家教网 > 初中数学 > 题目详情
如图,⊙O经过⊙O1的圆心O1,∠ADB=α,∠ACD=β,则α与β之间的关系是
[     ]
A.α=β
B.β=180°-2α
C.β=(90°-α)
D.β=(180°-α)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,直线AB的解析式为y=kx-2k(k<0)与x轴、y轴分别交于A、B两点,∠ABO=60°.经过A、O两点的⊙O1与x轴的负半轴交于点C,与直线AB切于点A.
(1)求C点的坐标;
(2)如图②,过O1作直线EF∥y轴,在直线EF上是否存在一点D,使得△DAB的周长最短,若存在,求出D点坐标,不存在,说明理由;
(3)在(2)的条件下,连接OO1与⊙O1交于点G,点P为劣弧
GF
上一个动点,连接GP与EF的延长线交于H点,连接EP与OG交于I点,当P在劣弧
GF
运动时(不与G、F两点重合),O1H-O1I的值是否发生变化,若不变,求其值,若发生变化,求出其值的变化范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下列材料:
如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,
求证:AC⊥BC
证明:过点C作⊙O1和⊙O2的内公切线交AB于D,
∵DA、DC是⊙O1的切线
∴DA=DC.精英家教网
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(-4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆O1与圆O2相交于A、B两点,它们的半径都为2,圆O1经过点O2,则四边形O1AO2B的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)若点O到直线AB的距离为
12
5
,且tan∠B=
3
4
,求线段AB的长;
(2)若点O到直线AB的距离为
12
5
,过点A的切线与y轴交于点C,过点O的切线交AC于点D,过点B的切线交OD于点E,求
1
CD
+
1
BE
的值;
(3)如图,若⊙O1经过点M(2,2),设△BOA的内切圆的直径为精英家教网d,试判断d+AB的值是否会发生变化,若不变,求出其值;若变化,求其变化的范围.

查看答案和解析>>

同步练习册答案