分析 首先根据a4+b4=c4-2a2b2,应用因式分解的方法,判断出a2+b2=c2;然后根据直角三角形斜边的平方等于两条直角边的平方和,判断出△ABC是直角三角形即可.
解答 解:∵a4+b4=c4-2a2b2,
∴a4+b4+2a2b2=c4,
∴(a2+b2)2=(c2)2,
∵a,b,c是△ABC的三条边,
∴a2+b2=c2,
∴△ABC是直角三角形.
点评 (1)此题主要考查了因式分解方法的应用,要熟练掌握,解答此题的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.
(2)此题还考查了直角三角形的三条边之间的关系,要熟练掌握,解答此题的关键是要明确:直角三角形斜边的平方等于两条直角边的平方和.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com