精英家教网 > 初中数学 > 题目详情
23、△ABC中,AB=AC,∠BAC=90°,过B、C两点作经过A的直线的垂线,垂足分别为D、E,如图(1).
(1)判断线段BD、DE、EC是什么关系?予以证明;
(2)如图(2),设O为BC的中点,连接DO、EO,判断DO、EO有什么关系?请说明理由.
分析:(1)根据已知条件及互余关系可证△ABD≌△CAE,则BD=AE,AD=CE,由DE=AD-AE,得出线段BD、DE、EC的关系;
(2)过O点作OG⊥AD,垂足为G点,根据O点为BC的中点,证明OG为线段DE的垂直平分线,再根据垂直平分线的性质得出结论.
解答:解:(1)DE=EC-BD.
理由:∵∠ABD+∠BAD=90°,∠BAD+∠EAC=90°
∴∠ABD=∠EAC,
又∵AB=AC,∠BDA=∠AEC=90°,
∴△ABD≌△CAE,BD=AE,AD=CE,
∴DE=AD-AE=EC-BD;

(2)DO=EO.
理由:如图2,过O点作OG⊥AD,垂足为G点,
∵O点为BC的中点,BD⊥AD,CE⊥AD,
∴G点为DE的中点,即OG为线段DE的垂直平分线,
∴DO=EO.
点评:本题考查了三角形全等的判定及性质,线段垂直平分线的判断与性质.关键是灵活运用判定与性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,∠A=36°,
(1)用尺规作图的方法,过B点作∠ABC的平分线交AC于D(不写作法,保留作图痕迹);
(2)求证:BC=BD=AD;
(3)求证:AD2=AC•DC;
(4)设
CDDA
=x,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,在△ABC中,AB=AC,点D,E在直线BC上运动.如果∠DAE=l05°,△ABD∽△ECA,则∠BAC=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网△ABC中,AB=AC,D、E分别是AB、AC的中点,若AB=4,BC=6,则△ADE的周长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

13、在△ABC中,AB=AC,BD是△ABC中线,已知△ABD和△BDC的周长之差为6,△ABC的周长是30,求这个等腰三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于D、E两点精英家教网,连接AO、BE、DC.
(1)求证:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度数.

查看答案和解析>>

同步练习册答案