精英家教网 > 初中数学 > 题目详情

已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.

证明:∵EF是BD的垂直平分线,
∴EB=ED,
∴∠EBD=∠EDB.
∵BD是△ABC的角平分线,
∴∠EBD=∠FBD.
∴∠FBD=∠EDB,
∴ED∥BF.
同理,DF∥BE,
∴四边形BFDE是平行四边形.
又∵EB=ED,
∴四边形BFDE是菱形.
分析:先证明四边形BFDE是平行四边形,再根据有一组邻边相等的平行四边形是菱形证明即可.
点评:考查了平行四边形的判定和菱形的判定,
菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:
①定义;
②四边相等;
③对角线互相垂直平分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、(1)已知:如图所示,BD与EC交于F点,AD=AE,∠B=∠C.
求证:①AB=AC;
②△EFB≌△DFC;
③BF=FC;
(2)如图所示,△ABD≌△ACE.求证:FE=FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,BD、CE是△ABC,AC、AB边上的高,BF=AC,CG=AB;
求证:AG=AF.

查看答案和解析>>

科目:初中数学 来源:《29.1.1 证明的再认识》2010年同步练习(B卷)(解析版) 题型:解答题

(1)已知:如图所示,BD与EC交于F点,AD=AE,∠B=∠C.
求证:①AB=AC;
②△EFB≌△DFC;
③BF=FC;
(2)如图所示,△ABD≌△ACE.求证:FE=FD.

查看答案和解析>>

同步练习册答案