精英家教网 > 初中数学 > 题目详情
(2002•上海)已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是    (答案不唯一).
【答案】分析:菱形的判定方法有三种:
①定义:一组邻边相等的平行四边形是菱形;
②四边相等;
③对角线互相垂直平分的四边形是菱形.
解答:解:由题意知,可添加:AB=AC.
则三角形是等腰三角形,
由等腰三角形的性质知,顶角的平分线与底边上的中线重合,
即点D是BC的中点,
∴DE,EF是三角形的中位线,
∴DE∥AB,DF∥AC,
∴四边形ADEF是平行四边形,
∵AB=AC,
点E,F分别是AB,AC的中点,
∴AE=AF,
∴平行四边形ADEF为菱形.
点评:本题考查了菱形的判定.利用了三角形的中位线的性质和平行四边形的判定和性质、等腰三角形的性质.也可添加∠B=∠C或AE=AF.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2002•上海)已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数.
(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;
(2)设这个二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年新人教版中考数学模拟试卷(10)(解析版) 题型:解答题

(2002•上海)已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数.
(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;
(2)设这个二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年山东省泰安市宁阳县中考数学模拟试卷(3)(解析版) 题型:解答题

(2002•上海)已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数.
(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;
(2)设这个二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省某市新人教版中考数学模拟试卷(3)(解析版) 题型:解答题

(2002•上海)已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数.
(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;
(2)设这个二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2002年上海市中考数学试卷(解析版) 题型:解答题

(2002•上海)已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数.
(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;
(2)设这个二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式.

查看答案和解析>>

同步练习册答案