精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.

【答案】
(1)证明:∵DE是切线,

∴OC⊥DE,

∵BE∥CO,

∴∠OCB=∠CBE,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠CBE=∠CBO,

∴BC平分∠ABE.


(2)在Rt△CDO中,∵DC=8,OC=0A=6,

∴OD= =10,

∵OC∥BE,

=

=

∴EC=4.8.


【解析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得 = ,由此即可解决问题;
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2 ,则图中阴影部分的面积为 . (结果不取近似值)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.
(长度均精确到1m,参考数据: ≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)

(1)求主桥AB的长度;
(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB的一边OA为平面镜,∠AOB=38°,在OB上有一点E , 从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )

A.76°
B.52°
C.45°
D.38°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉兴教育学院大学生小王利用暑假开展了30天的社会实践活动,参与了嘉兴浙北超市的经营,了解到某成本为15元/件的商品在x天销售的相关信息,如表表示:

销售量p(件)

P=45﹣x

销售单价q(元/件)

当1≤x≤18时,q=20+x
当18<x≤30时,q=38

设该超市在第x天销售这种商品获得的利润为y元.
(1)求y关于x的函数关系式;
(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知P是抛物线y2=4x上的动点,Q在圆C:(x+3)2+(y﹣3)2=1上,R是P在y轴上的射影,则|PQ|+|PR|的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点, + + = ,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3 , 则S12+S22+S32=(
A.2
B.3
C.6
D.9

查看答案和解析>>

同步练习册答案