精英家教网 > 初中数学 > 题目详情

为了进一步变化城市.某城市计划改建人民广场中心.一块边长为8米的正方形花圃,如图,AE=AF,点G、H、I分别是EE、CE、CF的中点,计划在△GHI内放置“奋进”大型塑像,在阴影部分种植荷花,其余部分种植茉莉.原来种植1平方米荷花和1平方米茉莉的总成本为200元,受季节和气候的影响,经核算荷花的种植成本提高了2成,茉莉的种植成本降低了1成,使每平方米荷花和每平方米茉莉的种植总成本提高了8%.
(1)试求出实际1平方米荷花和1平方米茉莉种植成本分别是多少元?
(2)若此花圃实际种植总成本为7956元,请求出AE的长度.

解:(1)设1平方米荷花种植成本为x元,1平方米茉莉种植成本为y元.列方程组得

则解得:
∴(1+20%)x=144,(1-10%)y=72
∴1平方米荷花种植成本为144元,
1平方米茉莉种植成本为72元.

(2)设AE=AF=x米,则荷花的种植面积为:[x2+×8(8-x)×2]平方米.
∵点G、H、I分别是EF、CE、CF的中点.
∴HI、GH、GI均为△CEF的中位线
易证△GHI∽△CEF,且相似比为1:2
∴茉莉的种植面积为:[82-x2-×8(8-x)×2]×平方米.
可得方程:[x2+×8(8-x)×2]×144+[82-x2-×8(8-x)×2]××72=7956
整理得:x2-16x+28=0解得:x1=2,x2=14(不合题意舍去)
∴AE的长度为2米.
分析:(1)设1平方米荷花种植成本为x元,1平方米茉莉种植成本为y元,根据题意列出方程组即可求得荷花种植成本和茉莉种植成本;
(2)设AE=AF=x米,则荷花的种植面积表示为:[x2+×8(8-x)×2]平方米,再根据点G、H、I分别是EF、CE、CF的中点得到HI、GH、GI均为△CEF的中位线,然后表示出茉莉的种植面积,根据种植成本为7956元列出方程求得x的值即可求得AE的长.
点评:本题考查了一元二次方程的应用及二元一次方程组的应用,同时还涉及到了相似三角形的判定与性质,在解决几何知识时用到了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了进一步变化城市.某城市计划改建人民广场中心.一块边长为8米的正方形花圃,如图,AE=AF,点G、H、I分别是EE、CE、CF的中点,计划在△GHI内放置“奋进”大型塑像,在阴影部分种植荷花,其余部分种植茉莉.原来种植1平方米荷花和1平方米茉莉的总成本为200元,受季节和气候的影响,经核算荷花的种植成本提高了2成,茉莉的种植成本降低了1成,使每平方米荷花和每平方米茉莉的种植总成本提高了8%.
(1)试求出实际1平方米荷花和1平方米茉莉种植成本分别是多少元?
(2)若此花圃实际种植总成本为7956元,请求出AE的长度.

查看答案和解析>>

科目:初中数学 来源:2013年贵州省黔西南州兴义市猪场坪乡中学中考数学模拟试卷(解析版) 题型:解答题

为了进一步变化城市.某城市计划改建人民广场中心.一块边长为8米的正方形花圃,如图,AE=AF,点G、H、I分别是EE、CE、CF的中点,计划在△GHI内放置“奋进”大型塑像,在阴影部分种植荷花,其余部分种植茉莉.原来种植1平方米荷花和1平方米茉莉的总成本为200元,受季节和气候的影响,经核算荷花的种植成本提高了2成,茉莉的种植成本降低了1成,使每平方米荷花和每平方米茉莉的种植总成本提高了8%.
(1)试求出实际1平方米荷花和1平方米茉莉种植成本分别是多少元?
(2)若此花圃实际种植总成本为7956元,请求出AE的长度.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省苏州市中考数学模拟试卷(五)(解析版) 题型:解答题

为了进一步变化城市.某城市计划改建人民广场中心.一块边长为8米的正方形花圃,如图,AE=AF,点G、H、I分别是EE、CE、CF的中点,计划在△GHI内放置“奋进”大型塑像,在阴影部分种植荷花,其余部分种植茉莉.原来种植1平方米荷花和1平方米茉莉的总成本为200元,受季节和气候的影响,经核算荷花的种植成本提高了2成,茉莉的种植成本降低了1成,使每平方米荷花和每平方米茉莉的种植总成本提高了8%.
(1)试求出实际1平方米荷花和1平方米茉莉种植成本分别是多少元?
(2)若此花圃实际种植总成本为7956元,请求出AE的长度.

查看答案和解析>>

同步练习册答案