精英家教网 > 初中数学 > 题目详情
如图,已知⊙C经过原点O,并与两坐标轴交于A、D两点,点B在⊙C上,∠OBA=30°,点D的坐精英家教网标为(0,6).
求:(1)点A的坐标;
(2)圆心C的坐标;
(3)⊙C的面积.
分析:根据直角坐标系的两坐标轴的垂直关系,连接AD,可证AD为直径;将已知圆周角∠OBA转化,即∠D=∠OBA=30°,在Rt△OAD中,解答本题的几个问题.
解答:精英家教网解:连接AD,∵∠DOA=90°,
∴AD为直径,即点C在AD上,
由圆周角定理,得∠D=∠OBA=30°,
在Rt△OAD中,OD=6,则OA=2
3
,AD=4
3

即圆的半径为2
3

(1)因为OA=2
3
,所以点A的坐标为(2
3
,0);
(2)点C为AD的中点,故圆心C的坐标为(
3
,3);
(3)因为圆的半径为2
3
,所以⊙C的面积为π(2
3
2=12π平方单位.
点评:充分发挥辅助线AD的作用,将已知条件集中到Rt△OAD中解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它精英家教网们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(30):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(32):2.8 二次函数的应用(解析版) 题型:解答题

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(28):23.5 二次函数的应用(解析版) 题型:解答题

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

查看答案和解析>>

科目:初中数学 来源:2012年江西省中考数学模拟试卷(一)(解析版) 题型:解答题

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.

查看答案和解析>>

同步练习册答案