精英家教网 > 初中数学 > 题目详情
14、如图,在直角坐标系中,射线OA与x轴正半轴重合,以O为旋转中心,将OA逆时针旋转:OA?OA1?OA2…?OAn…,旋转角∠AOA1=2°,A1OA2=4°,∠A2OA3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A8OA9=2°,∠A9OA10=4°,…周而复始.则当OAn与y轴正半轴重合时,n的最小值为(  ) (提示:2+22+23+24+25+26+27+28=510)
分析:由题意知:每8组角为一个循环;若OA与y轴正半轴重合,那么射线OA旋转的度数为:360°•k+90°,即旋转的角度为整数,且是10的倍数;在每组的循环中,前4组或后4组角的度数和正好是10°的倍数,因此所求的n值必为4的倍数,首先可以排除的是C选项,然后再将A、B、D代入旋转角度表达式中进行验证即可,能求出k是正整数的就是符合题意的n值.
解答:解:若经过旋转OAn与y轴正半轴重合,那么射线OA旋转的角度为:360°•k+90°,(k为正整数)
因此旋转的角度必为10°的倍数;
由题意知:2+22+23+24=30,25+26+27+28=480;
即n的知必为4的倍数,显然C选项不符合题意;
A、当n=16时,旋转的角度为:510°×(16÷8)=1020°,
即360°•k+90°=1020°,所求得的k值不是正整数,故A选项不符合题意;
B、当n=24时,旋转的角度为:510°×(24÷8)=1530°,
即360°•k+90°=1530°,解得k=4,故B选项符合题意;
D、显然32>24,已经证得B选项符合题意,那么D选项一定不符合题意;
故选B.
点评:此题主要运用了排除法来解答,正确的表示出射线OA旋转的角度,并正确的判断出n是4的倍数,是解决此题的关键,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案