精英家教网 > 初中数学 > 题目详情
精英家教网已知如图,四边形ABCD为平行四边形,AD=a,AC为对角线,BM∥AC,过点D作 DE∥CM,交AC的延长线于F,交BM的延长线于E.
(1)求证:△ADF≌△BCM;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).
分析:(1)由平行线的性质可得∠BMC=∠AFD,∠FAD=∠MBC,进而可得出结论.
(2)可把四边形ABED的面积分解为△ADF的面积与四边形ABEF的面积进行求解.
解答:(1)证明:在平行四边形ABCD中,则AD=BC,
∵AC∥BM,∴∠AFD=∠E,
又CM∥DE,∴∠BMC=∠E,
∴∠BMC=∠AFD,
同理∠FAD=∠MBC,
则在△ADF与△BCM中.
∠BMC=∠AFD
∠FAD=∠MBC
AD=BC

∴△ADF≌△BCM.
(2)解:在△ACD中,
∵AC⊥CD,∠ADC=60°,
∴CD=
1
2
AD=
1
2
a,
则AC=
3
2
a,AF=
3
3
4
a,
又由(1)可得BE=
3
a,
SABED=S△ADF+SABEF=
1
2
•AF•CD+
1
2
(AF+BE)•CD=
1
2
×
3
3
4
1
2
a+
1
2
3
3
4
a+
3
a)×
1
2
a=
5
3
8
a2
点评:本题主要考查了平行四边形的性质,全等三角形的判定及性质以及三角形,四边形面积的求法,应熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.
(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知如图平行四边形ABCD,分别以AB,BC为边作等边△EAB与等边△FBC,连接EF,DF与DE,猜想△DEF的形状并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,四边形ABOC为矩形,AB=4,AC=6,一次函数经过B点与反比例函数交于D点,与x轴交于E点,且D为AC的中点.
①求点D和点E的坐标;
②求一次函数和反比例函数的解析式;
③在x轴上是否存在点P,使△PBD的周长最小?若存在,求出点P的坐标和△PBD的周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,四边形ABCD中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求这个四边形的面积.

查看答案和解析>>

同步练习册答案