精英家教网 > 初中数学 > 题目详情
13.如图,△ABC中,AB=AC,BD=CE,BE=CF.
求证:∠EDF=∠EFD.

分析 先证明△BDE≌△CEF,推出ED=EF,由此即可证明.

解答 证明:∵AB=AC,
∴∠B=∠C,
在△BDE和△CEF中,
$\left\{\begin{array}{l}{BD=CE}\\{∠B=∠C}\\{BE=CF}\end{array}\right.$,
∴△BDE≌△CEF,
∴ED=EF,
∴∠EDF=∠EFD.

点评 本题考查全等三角形的性质、等腰三角形的性质和判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.(1)已知8m=12,4n=6,求26m-2n+1的值.
(2)已知9m•27m-1÷32m的值为27,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:x2+5xy-6y2=0,求:$\frac{2x+3y}{2x-y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.化简与计算
(1)$\sqrt{8}+\sqrt{32}-\sqrt{2}$      
(2)$\sqrt{27}+{({2014-π})^0}+|{-3\sqrt{3}}|-1$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知函数:
(1)图象不经过第三象限;
(2)图象与直线y=-x平行,
请你写出一个同时满足(1)和(2)的函数关系式:y=-x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在△ABC中,DE垂直平分线段AB,交AB于E,交AC于,已知AC=16,BC=10,求△BCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.求下列各数的算术平方根:
36,$\frac{9}{16}$,17,0.81,10-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,且∠EAF=45°,连接EF,求证:DE+BF=EF.
方法感悟:阅读解题过程,并完成下列填空:
延长CB到点G,使GB=DE,连接AG.
则∠ABG=∠D=90°,
因为四边形ABCD是正方形,
所以AB=AD.
又因为BG=DE.
所以△ABG≌△ADE.
所以∠1=∠2,AG=AE.
因为∠EAF=45°,
所以∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
因为∠1=∠2,所以∠1+∠3=45°.
即∠GAF=45°.
又AG=AE,AF=AF,所以△CAF≌△GAF.
所以GF=EF.
所以DE+BF=EF.
方法迁移:如图2,在四边形ABCD中,AB=AD=1,∠B=∠D=90°,∠C=∠EAF=60°,点E、F分别为DC、BC边上的点,试说明DE、BF、EF之间有何数量关系?并求出△CEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知在Rt△ABC中,∠B=90°,请用尺规在边BC上作出一点P,使点P到AC的距离与其到点B的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑).

查看答案和解析>>

同步练习册答案