精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠ACB=90°,AC=4cm,BC=8cm,以点P为圆心,以3cm长为半径的圆在直线BC上滑动.
(1)如图,连接PA,若PA=PB时,请你判断⊙P与直线AC的位置关系,并说明理由;
(2)当⊙P与直线AB的两个交点和圆心P为顶点的三角形是正三角形时,求PC的长;
(3)设PC=x,请你直接写出⊙P与直线AB相交时x的取值范围.

【答案】分析:(1)在Rt△ACP中,利用勾股定理即可得到一个关于PC的方程,解方程即可求解;
(2)分圆心P在线段BC上,和圆心P在线段CB的延长线上,两种情况进行讨论,设⊙P交AB于点E、F,过点P作PH⊥EF,垂足为H,由△BHP∽△BCA,可以得到对应边的比相等,即可求得;
(3)根据相似三角形的性质,求得当直线与圆相交时x的值,根据直线与圆相交时,P到直线AB的距离小于半径即可确定.
解答:解:(1)在Rt△ACP中,
∵AC=4cm,BC=8cm,PA=PB
∴PC2+AC2=PA2
即:PC2+16=(8-PC)2…(1分)
解得:PC=3
∴⊙P与直线AC相切…(2分)

(2)分两种情况讨论:
①当圆心P在线段BC上,设⊙P交AB于点E、F
过点P作PH⊥EF,垂足为H,…(3分)
由△BHP∽△BCA得…(4分)
把AC=4,AB=4,PH=代入比例式得:PB=…(5分)
∴PC=8-…(6分)
②当圆心P在线段CB的延长线上时:
同理可得:PB=…(7分)
∴OP=8+…(8分)
∴当PC=8-或8+时,以⊙P与直线AB的两个交点和圆心P为顶点的三角形是正三角形.

(3)⊙P与直线AB相交时x的取值范围为:

点评:本题考查了直线与圆的位置关系,以及相似三角形的判定与性质,正确理解△BHP∽△BCA是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案