精英家教网 > 初中数学 > 题目详情
精英家教网已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P,BE⊥DC,垂足为E,DF∥EB,交AB与点F,FH⊥BD,垂足为H,BC=4,CP=3.
求(1)BD和DH的长;(2)BE•BF的值.
分析:(1)本题需先连接AC,由此可以得出AC=BC,可得出AP=5,再根据切割线定理可得PD•PA=PC•PB,再得出PD、AD的长,最后求出BD的长.再根据∠CDB是弧BC所对圆周角,求出∠CDB=45°得出∠BDF=45°,得出△BDA∽△BHF即可求出DH的长.
(2)根据第一题的得出,知道∠CDB=45°,∠E=90°得出∠DBE=45°再根据已知条件得出△FHB∽△CEB,分别求出
BE•BF=BC•BH即可求出结果.
解答:解:(1)连接AC,可知∠ACB=90°,AC=BC,
由勾股定理得AP=5
又∵由割线定理可得PD•PA=PC•PB,
∴PD=4.2,AD=0.8
∵∠ADB=90°,AB=4
2

∴BD=5.6
又∵∠CDB是弧BC所对圆周角,
∴∠CDB=45°,
∵BE⊥DC,DF∥EB,
∴DF⊥DE,即∠EDF=90°,
可得∠BDF=∠EDF-∠CDB=45°,
∴DH=HF
又由△BDA∽△BHF
BH
BD
=
FH
AD

∴DH=0.7
精英家教网
(2)∵∠CDB=45°,∠E=90°
∴∠DBE=45°
又∵∠ABC=45°,
∴∠FBH=∠CBE
又∠FHB=∠E=90°
∴△FHB∽△CEB
∴BE•BF=BC•BH
=4.9×4
=19.6
点评:本题主要考查了相似三角形的判定和性质,在解题时要注意知识的综合运用,必要的时候图形要作一些辅助线方可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案