精英家教网 > 初中数学 > 题目详情

已知:直线y=-2x-2与x轴交于点A,与y轴交于点C,抛物线经过点A、C、E,且点E(6,7)
(1)求抛物线的解析式.
(2)在直线AE的下方的抛物线取一点M使得构成的三角形AME的面积最大,请求出M点的坐标及△AME的最大面积.
(3)若抛物线与x轴另一交点为B点,点P在x轴上,点D(1,-3),以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

解:(1)∵直线y=-2x-2与x轴交于点A,与y轴交于点C,
∴A(-1,0),C(0,-2).
设过点A、C、E三点的抛物线的解析式为y=ax2+bx+c,

解得
∴y=x2-x-2;

(2)在抛物线上取一点M,作MN∥y轴交AE于点N,过点E作EH⊥x轴于点H,则S△AME=•MN•AH.
设点M的横坐标为a,则纵坐标为a2-a-2.
∵MN∥y轴,∴点N的横坐标为a.
设直线AE的解析式y=kx+b,把A(-1,0)、E(6,7)代入,
,解得
∴y=x+1.
∵N在直线AE上,∴N(a,a+1).
∴MN=a+1-(a2-a-2)=a+1-++2=-++3,
∴当a==时,MN有最大值,此时MN==
∴S△AME=,M();

(3)过点E作EF⊥x轴于点F,过点D作DM⊥x轴于点M.
∵A(-1,0),B(4,0),E(6,7),
∴AO=1,BO=4,FO=6,FE=7,AB=5,
∴AF=FE=7,∠EAB=45°,AE==
∵D(1,-3 ),
∴DM=3,OM=1,MB=3,
∴DM=MB=3,
∴∠MBD=45°,
∴∠EAB=∠MBD,BD==
过点D作∠DP1B=∠AEB交x轴于点P1,则△ABE∽BDP1
∴AE:P1B=AB:BD,即:P1B=5:
∴P1B=,P1O=P1B-OB=-4=
∴P1(-,0);
过点D作∠DP2B=∠ABE交x轴于点P2,则△ABE∽△BP2D,
∴DB:AE=P2B:AB,即=P2B:5,
∴P2B=,P2O=OB-P2B=4-=
∴P2,0).
分析:(1)先根据直线y=-2x-2与x轴交于点A,与y轴交于点C,求出A,C两点的坐标,再用待定系数法即可求出抛物线的解析式;
(2)在抛物线上取一点M,作MN∥y轴交AE于点N,过点E作EH⊥x轴于点H,则S△AME=•MN•AH,而AH=7,故当MN取最大值时,△AME的面积最大.设点M的横坐标为a,则纵坐标为a2-a-2,先用待定系数法求出AE的解析式,得到N的坐标为(a,a+1),再用含a的代数式表示MN,然后根据二次函数的增减性求出MN的最大值;
(3)过点E作EF⊥x轴于点F,过点D作DM⊥x轴于点M.先证明△EAF与△BDM都是等腰直角三角形,得到∠EAB=∠MBD.当以点P、B、D为顶点的三角形与△AEB相似时,①过点D作∠DP1B=∠AEB交x轴于点P1,得到△ABE∽BDP1;②过点D作∠DP2B=∠ABE交x轴于点P2,得到△ABE∽△BP2D,根据相似三角形对应边成比例即可.
点评:本题着重考查了待定系数法求二次函数解析式、二次函数的最值、相似三角形的判定和性质,三角形的面积等知识点,综合性较强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
12
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x-2与x轴交于点A,与y轴交于点C,抛物线经过点A、C、E,且点E(6,7)
(1)求抛物线的解析式.
(2)在直线AE的下方的抛物线取一点M使得构成的△AME的面积最大,请求出M点的坐标及△AME的最大面积.
(3)若抛物线与x轴另一交点为B点,点P在x轴上,点D(1,-3),以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x+2分别与x轴、y轴相交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,过C作CD⊥x轴于D.求:
(1)点A、B的坐标;
(2)AD的长;
(3)过A、B、C三点的抛物线的解析式;
(4)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,直线y=2x+3与直线y=-2x-1.
(1)求两直线交点C的坐标;
(2)求△ABC的面积;
(3)在直线BC上能否找到点P,使得S△APB=6?若能,请求出点P的坐标;若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,直线y=-2x+4k与双曲线y=
kx
交于点A(x1,y1)、B(x2,y2),满足y1+y2=20,那么k的值是
 

查看答案和解析>>

同步练习册答案