精英家教网 > 初中数学 > 题目详情
5.点A、B分别是函数y=$\frac{4}{x}$(x>0)和y=-$\frac{4}{x}$(x<0)图象上的一点,A、B两点的横坐标分别为a、b,且OA=OB,a+b≠0,则ab的值为(  )
A.-4B.-2C.2D.4

分析 先根据题意得出A、B两点的坐标,进而可得出结论.

解答 解:∵点A、B分别是函数y=$\frac{4}{x}$(x>0)和y=-$\frac{4}{x}$(x<0)图象上的一点,A、B两点的横坐标分别为a、b,
∴A(a,$\frac{4}{a}$),B(b,-$\frac{4}{b}$)且a>0,b<0.
∵OA=OB,a+b≠0,
∴a=-$\frac{4}{b}$,b=-$\frac{4}{a}$
∴ab=$\frac{4}{b}$•$\frac{4}{a}$=$\frac{16}{ab}$,
∴ab=-4.
故选A.

点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2-b的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是(1),(2),(3),(5).
(1)EF=$\sqrt{2}$OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=$\sqrt{2}$OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=$\frac{3}{4}$;(5)OG•BD=AE2+CF2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列事件是必然事件的是(  )
A.打开电视,正在播放《大国工匠》
B.袋中只有10个球,且都是红球,任意摸出一个球是红球
C.5年后数学课代表会考上清华大学
D.2015年全年由367天

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列计算正确的是(  )
A.$\sqrt{2}$+$\sqrt{2}$=2B.$\sqrt{3}$-$\sqrt{3}$=0C.$\sqrt{2}$×$\sqrt{2}$=4D.$\sqrt{(-3)^{2}}$=-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒
(1)求线段EF的长(用含t的代数式表示);
(2)求点H与点D重合时t的值;
(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;
(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为4;当OO′⊥AD时,t的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知A(4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数y=$\frac{m}{x}$的图象的两个交点
(1)求m的值和一次函数的解析式;
(2)结合图象直接写出不等式$\frac{m}{x}$-kx-b>0的解集;
(3)若点M(t,y1)、N(1,y2)是反比例函数y=$\frac{m}{x}$上两点,且y1<y2,请你借助图象,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为ha,hb,hc,各边上的内接正方形的边长分别记为xa,xb,xc
(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证:$\frac{1}{a}$+$\frac{1}{{h}_{a}}$=$\frac{1}{{x}_{a}}$;
(2)特殊应用:若∠BAC=90°,xb=xc=2,求$\frac{1}{b}$+$\frac{1}{c}$的值;
(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断xb与xc的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.P在第三象限内,P到x轴距离为4,到y轴距离为3,那么点P的坐标为(  )
A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)

查看答案和解析>>

同步练习册答案