解:(1)证明:过P作PQ∥l
1∥l
2,
由两直线平行,内错角相等,可得:
∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPE+∠QPF,
∴∠3=∠1+∠2.
(2)∠3=∠2-∠1;
证明:过P作直线PQ∥l
1∥l
2,
则:∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPF-∠QPE,
∴∠3=∠2-∠1.


(3)∠3=360°-∠1-∠2.
证明:过P作PQ∥l
1∥l
2;
同(1)可证得:∠3=∠CEP+∠DFP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠CEP+∠DFP+∠1+∠2=360°,
即∠3=360°-∠1-∠2.
(4)过P作PQ∥l
1∥l
2;
①当P在C点上方时,
同(2)可证:∠3=∠DFP-∠CEP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠DFP-∠CEP+∠2-∠1=0,
即∠3=∠1-∠2.
②当P在D点下方时,
∠3=∠2-∠1,解法同上.
综上可知:当P在C点上方时,∠3=∠1-∠2,当P在D点下方时,∠3=∠2-∠1.
分析:此题四个小题的解题思路是一致的,过P作直线l
1、l
2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.
点评:此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.