精英家教网 > 初中数学 > 题目详情

按图所示,所示的方法将几何体切开,所得的三个截面有没有互相平行的线段?如果有,填上字母表示出来.

 

【答案】

如图所示:

AB∥CD,AC∥BD;EF∥GH,EG∥FH;PM∥QN,PQ∥MN.

【解析】

试题分析:仔细观察图形,根据几何体的结构特点及平行线的定义,在图上标出字母,并写出互相平行的线段.

如图所示:

AB∥CD,AC∥BD;EF∥GH,EG∥FH;PM∥QN,PQ∥MN.

考点:本题考查了平行线的定义

点评:解答本题的关键是注意在同一平面内,两直线的位置关系只有平行和相交(重合除外).

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,按下面的方法将几何体切开,所得的三个截面有没有互相平行的线段?如果有,填上字母表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.
(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1,图2,图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);
(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;
(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

4、创新题:教材中的变型题
(P137,习题4.5第1题)按图所示,所示的方法将几何体切开,所得的三个截面有没有互相平行的线段?如果有,填上字母表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题提出】如何把n个正方形拼接成一个大正方形?
为解决上面问题,我们先从最基本,最特殊的情形入手.对于边长为a的两个正方形ABCD和EFGH,如何把它们拼接成一个正方形?
【问题解决】对于边长为a的两个正方形ABCD和EFGH,按图所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图中的四边形BNED.从拼接的过程容易得到结论:
①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
【类比应用】
对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N.明四边形MNED是正方形,并请你用含a,b的代数式表示正方形MNED的面积;
②如图,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比如图,用数字表示对应的图形直接画在图中).
【拓广延伸】对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.

查看答案和解析>>

同步练习册答案