精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.正确的个数是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
B
①∵点B′与点B关于AE对称,
∴△ABF与△AB′F关于AE对称,
∴AB=AB′,
∵AB=AD,
∴AB′=AD.故本选项正确;
②如图,连接EB′.

则BE=B′E=EC,
∠FBE=∠FB′E,
∠EB′C=∠ECB′.
则∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,
即△BB′C为直角三角形.
∵FE为△BCB′的中位线,
∴B′C=2FE,
∵△B′EF∽△AB′F,

故FB′=2FE.
∴B′C=FB′.
∴△FCB′为等腰直角三角形.
故本选项正确.
③假设∠ADB′=75°成立,
则∠AB′D=75°,
∠ABB′=∠AB′B=360°-75°-75°-90°=60°,
∴△ABB′为等边三角形,
故B′B=AB=BC,与B′B<BC矛盾,
故本选项错误.
④设∠ABB′=∠AB′B=x度,
∠AB′D=∠ADB′=y度,
则在四边形ABB′D中,2x+2y+90=360,
即x+y=135度.
又∵∠FB′C=90°,
∴∠DB′C=360°-135°-90°=135°.
故本选项正确.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案