精英家教网 > 初中数学 > 题目详情
(2013•苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是
△DFG或△DHF
△DFG或△DHF
(只需要填一个三角形)
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).
分析:(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;
(2)利用树状图得出所有的结果,进而根据概率公式求出即可.
解答:解:(1)∵△ABC的面积为:
1
2
×3×4=6,
只有△DFG或△DHF的面积也为6且不与△ABC全等,
∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;

(2)画树状图得出:

由树状图可知共有6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,
故所画三角形与△ABC面积相等的概率P=
3
6
=
1
2

答:所画三角形与△ABC面积相等的概率为
1
2

故答案为:△DFG或△DHF.
点评:此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•苏州)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为
(2,4-2
2
(2,4-2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧
BC
的弧长为
1
3
π
1
3
π
.(结果保留π)

查看答案和解析>>

同步练习册答案