精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.
(1)求k的值;
(2)判断△QOC与△POD的面积是否相等,并说明理由.
(1)k=12。
(2)相等。理由见解析

试题分析:(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;
(2)设点P的坐标为(m,n),点P在反比例函数(x>0)的图象上,求出SPOD,根据AB∥x轴,OC=3,BC=4,点Q在线段AB上,求出SQOC,二者比较即可。 
解:(1)∵点B与点A关于y轴对称,A(﹣3,4),
∴点B的坐标为(3,4)。
∵反比例函数(x>0)的图象经过点B,
,解得k=12。
(2)相等。理由如下:
设点P的坐标为(m,n),其中m>0,n>0,
∵点P在反比例函数(x>0)的图象上,
,即mn=12。∴SPOD=OD•PD=mn=×12=6。
∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4。
∵点Q在线段AB上,∴SQOC=OC•BC=×3×4=6。
∴SQOC=SPOD
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,

(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列函数中,是反比例函数的是(  )
A.y=5﹣xB.C.y="2013x"D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是
A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=x的图象与函数的图象在第一象限内交于点B,点C是函数在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数,当x<0时,y随x的增大而减小,则k的范围(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知双曲线经过点(2,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且a1<0<a2,那么b1     b2

查看答案和解析>>

同步练习册答案