精英家教网 > 初中数学 > 题目详情

已知,如图,抛物线轴交于点,与轴交于点,点的坐标为,对称轴是

(1)求该抛物线的解析式;

(2)点是线段上的动点,过点,分别交轴、于点P、,连接.当的面积最大时,求点的坐标;

(3)在(2)的条件下,求的值.

 

【答案】

(1)由题意,得解得

所求抛物线的解析式为:

(2)设点的坐标为,过点轴于点

,得

∴点的坐标为

,∴.∴

.  ∴

 

∴当时,有最大值3,此时

(3)∵  、 、

是等腰直角三角形

是等腰直角三角形

∴ 点P的坐标为

∴   

【解析】(1)由抛物线y=ax2+bx+4(a≠0)与y轴交于点C,与x轴交于点A,B,点A的坐标为(-4,0),对称轴是x=-1,利用待定系数法求解即可求得二次函数的解析式;

(2)由(1)即可求得点B的坐标,则可求得AB与BM的长,又由MN∥AC,即可证得△BMN∽△BAC,利用相似三角形的对应边成比例,即可求得NE的长,SCMN=SCBM-SNBM,求得SCMN=- (m+1)2+3,则可求得△CMN的面积最大时,点M的坐标;

(3)由A(-4,0)、B(2,0)、C(0,4)、M(-1,0),则可证得△AOC是等腰直角三角形,求得AC的长,又由MN∥AC,证得△MOP是等腰直角三角形,即可求得△CPM的面积,然后由SCPN=SCMN-SCPM求得△CPN的面积,又由SABC=AB•OC=12,求其比值即可求得答案.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•浦江县模拟)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0),点B的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线 与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京师大附中九年级上学期期中考试数学卷 题型:解答题

 已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

1.(1)求的面积.

2.(2)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源:2013届河南省周口市初一下学期第九章一元一次不等式组检测题 题型:解答题

已知:如图,抛物线轴交于点,与轴交于两点,点的坐标为

(1)求抛物线的解析式及顶点的坐标;

(2)设点是在第一象限内抛物线上的一个动点,求使与四边形面积相等的四边形的点的坐标;

(3)求的面积.

 

查看答案和解析>>

同步练习册答案