精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
k2x
和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.
(1)求反比例函数的解析式?
(2)已知A在第一象限,是两个函数的交点,求A点坐标?
(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?
分析:(1)把(a,b),(a+k,b+k+2)代入一次函数的解析式,得出方程组,求出k即可;
(2)解由反比例函数和一次函数的解析式组成发的方程组,求出方程组的解即可;
(3)根据等腰三角形的判定,有三种情况:①当OA=OP时,有2个点符合;②当OA=AP时,有1个点符合;③当AP=OP时,有1个点符合.
解答:解:(1)∵一次函数y=2x-1的图象经过(a,b),(a+k,b+k+2)两点,
代入得:
b=2a-1
b+k+2=2(a+k)-1

解得:k=2,
代入反比例函数的解析式得:y=
2
2x
=
1
x

∴反比例函数的解析式是y=
1
x


(2)解方程组
y=
1
x
y=2x-1

得:
x1=-
1
2
y1=-2
x2=1
y2=1

∴两函数的交点坐标是(-
1
2
,-2),(1,1),
∵交点A在第一象限,
∴A(1,1).

(3)在x轴上存在点P,使△AOP为等腰三角形,
理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,
∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(
2
,0),(-
2
,0);
②以A为圆心,以OA为半径作圆,交x轴于两点E,此时OA=AE,
∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);
③作OA的垂直平分线交x轴于F,此时AF=OF,
∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);
∴存在4个点P,使△AOP是等腰三角形.
点评:本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,等腰三角形的判定等知识点的运用,主要考查学生综合运用性质进行推理和计算的能力,用的数学思想是分类讨论思想,题目比较好,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案