ÔĶÁÌ⣺Ïȹ۲ìÏÂÁеÈʽ£¬È»ºóÓÃÄã·¢ÏֵĹæÂɽâ´ðÏÂÁÐÎÊÌ⣮
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
1
2¡Á4
=
1
2
£¨
1
2
-
1
4
£©
1
4¡Á6
=
1
2
(
1
4
-
1
6
)
1
6¡Á8
=
1
2
(
1
6
-
1
8
)

©©©©
£¨1£©¼ÆËã
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
1
5¡Á6
=
 
£®
£¨2£©Ì½¾¿
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=
 
£®£¨Óú¬ÓÐnµÄʽ×Ó±íʾ£©
£¨3£©Èô
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
(2n-1)(2n+1)
µÄֵΪ
49
99
£¬ÇónµÄƽ·½¸ù£®
·ÖÎö£º¸ù¾Ý
1
n(n+1)
=
1
n
-
1
n+1
½áºÏÌâÒâ¹æÂɼ´¿ÉµÃ³ö¸÷ÌâµÄ´ð°¸£®
½â´ð£º½â£º£¨1£©1-
1
6
=
5
6
£®
£¨2£©1-
1
n+1
=
n
n+1
£®
£¨3£©
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
(2n-1)(2n+1)
=
49
99
£¬
¡ß±äÐκóµÄµÈʽΪԭʽµÄÁ½±¶£¬
¡à
1
2
(1-
1
2n+1
)=
49
99
£¬
¡à1-
1
2n+1
=
98
99
£¬
¡à
1
2n+1
=
1
99
£¬
¡à2n+1=99£¬
¡à2n=98£¬
¡àn=49£®
¡ànµÄƽ·½¸ùÊÇ¡À7£®
µãÆÀ£º±¾Ì⿼²éÁËƽ·½¸ùµÄ֪ʶ£¬ÓÐÒ»¶¨ÄѶȣ¬¹Ø¼üÊÇÕÆÎÕ
1
n(n+1)
=
1
n
-
1
n+1
Õâ¸ö¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

̽¾¿Ì⣺Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌâ
¢Ù£»          ¢Ú£»
¢Û£»       ¢Ü
¡¾Ð¡Ìâ1¡¿ÄãÅжÏÍêÒÔÉϸ÷ÌâÖ®ºó£¬·¢ÏÖÁËʲô¹æÂÉ£¿ÇëÓú¬ÓÐnµÄʽ×Ó½«¹æÂɱíʾ³öÀ´£¬²¢×¢Ã÷nµÄÈ¡Öµ·¶Î§
¡¾Ð¡Ìâ2¡¿ÇëÓÃÊýѧ֪ʶ˵Ã÷ÄãËùдʽ×ÓµÄÕýÈ·ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁÌ⣺Ïȹ۲ìÏÂÁеÈʽ£¬È»ºóÓÃÄã·¢ÏֵĹæÂɽâ´ðÏÂÁÐÎÊÌ⣮
Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬Êýѧ¹«Ê½£¬Êýѧ¹«Ê½=Êýѧ¹«Ê½£¨Êýѧ¹«Ê½£©Êýѧ¹«Ê½Êýѧ¹«Ê½
©©©©
£¨1£©¼ÆËãÊýѧ¹«Ê½=______£®
£¨2£©Ì½¾¿Êýѧ¹«Ê½+¡­+Êýѧ¹«Ê½=______£®£¨Óú¬ÓÐnµÄʽ×Ó±íʾ£©
£¨3£©ÈôÊýѧ¹«Ê½+¡­+Êýѧ¹«Ê½µÄֵΪÊýѧ¹«Ê½£¬ÇónµÄƽ·½¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºÆÚÄ©Ìâ ÌâÐÍ£º½â´ðÌâ

ÔĶÁÌ⣺Ïȹ۲ìÏÂÁеÈʽ£¬È»ºóÓÃÄã·¢ÏֵĹæÂɽâ´ðÏÂÁÐÎÊÌ⣮
                                       
=£¨£©                  
©©©©
£¨1£©¼ÆËã _____£»
£¨2£©Ì½¾¿_____ £®£¨Óú¬ÓÐnµÄʽ×Ó±íʾ£©
£¨3£©ÈôµÄֵΪ£¬ÇóµÄƽ·½¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º¹ã¶«Ê¡Öп¼ÕæÌâ ÌâÐÍ£º½â´ðÌâ

ÔĶÁÌ⣺Ïȹ۲ìÏÂÁеÈʽ£¬È»ºóÓÃÄã·¢ÏֵĹæÂɽâ´ðÏÂÁÐÎÊÌ⣮
                        
              
           
©©©©
£¨1£©¼ÆËã _____£»
£¨2£©Ì½¾¿_____ £»£¨Óú¬ÓÐnµÄʽ×Ó±íʾ£©
£¨3£©ÈôµÄֵΪ£¬ÇóµÄÖµ¡£

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸