精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系中,O为原点,A(1,3)B(-2,0),△AOB的外接圆M交y轴于E点,AC是直径,AD⊥OD于D.
(1﹚求证:AD•AC=AB•AO;
(2﹚求E、C两点坐标.

(1)证明:如图:连接BC,AO,
∵AC是直径,
∴∠ABC=90=∠ADO,
又∵ACBO是⊙M的内接四边形,
∴∠AOD=∠C.
∴△ACB∽△AOD,
=
∴AD•AC=AB•AO.

(2)解:如图:
AD=BD=3,AB=3
由(1)得:BC=
过点C作CF⊥BD于F,则CF=BF=1,
∴C(-3,1).
∵A(1,3),M是AC的中点,
∴M(-1,2)
过点M作MH⊥OE于H,则H(0,2),
∴E(0,4).
分析:(1)连接BC,OA,根据直径所对的圆周角是直角,以及圆内接四边形的一外角等于与它不相邻的内对角,可以判定△ABC∽△ADO,再用相似三角形对应边的比相等证明等式成立.
(2)由A,B两点的坐标可以得到△ABD是等腰直角三角形,然后用(1)中相似三角形的性质,求出BC边的长,得到点C的坐标,然后用垂径定理得到点E的坐标.
点评:本题考查的是相似三角形的判定与性质,(1)根据题意用两角对应相等的两三角形相似判定△ABC∽△ADO,再用相似三角形的性质证明等式成立.(2)运用(1)中的相似三角形求出BC的长,求出点C的坐标,知道点A和点C的坐标,用中点坐标公式求出点M的坐标,然后求出点E的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案