精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.

(1)求b,c的值.
(2)结合函数的图象探索:当y>0时x的取值范围.
(1),c=2;(2)-1<x<3.

试题分析:(1)根据正方形的性质得到B(2,2),C(0,2),然后把B点和C点坐标代入解析式得到关于b、c的方程组,再解方程组即可;
(2)由(1)得到二次函数解析式为y=-x2+x+2,再求出抛物线与x轴的交点坐标,然后根据图象得到当y>0时x的取值范围.
试题解析:(1)∵正方形OABC的边长为2,
∴B(2,2),C(0,2),
把B(2,2),C(0,2)代入y=-x2+bx+c得
,解得
(2)二次函数解析式为y=-x2+x+2,
当y=0时,-x2+x+2=0,
解得x1=-1,x2=3,
∴抛物线与x轴的交点坐标为(-1,0),(3,0),
∴当-1<x<3时,y>0.
考点: 1.待定系数法求二次函数解析式;2.二次函数与不等式(组).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求该二次函数的解析式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m 取何值时,

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的图象向右移动3个单位,再向下移动4个单位,解析式是                  ;它的顶点坐标是            .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.

(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+2x-1.
(1)写出它的顶点坐标;
(2)当x取何值时,y随x的增大而增大;
(3)求出图象与轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:
 
每件T恤的利润(元)
销售量(件)
第一个月
 
 
清仓时
 
 
(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:二次函数的图象开口向上,并且经过原点.
(1)求的值;
(2)用配方法求出这个二次函数图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数的图象过(1,-1)和(3,0),则下列关于这个二次函数的描述,正确的是(  ).
A.y的最小值大于-1B.当x=0时,y的值大于0
C.当x=2时,y的值等于-1D.当x>3时,y的值大于0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=2(x﹣1)2+3的图象的顶点坐标是            .

查看答案和解析>>

同步练习册答案