精英家教网 > 初中数学 > 题目详情
(2004•枣庄)(1)已知x+=3,求的值;
(2)已知关于x的一元二次方程x2-x+1-a=0有两个不相等的正根,求a的取值范围.
【答案】分析:(1)代数式=x2+3+=(x+2+1,再把已知代入即可;
(2)根据一元二次方程有两个不相等的实根,则判别式△>0,并且两根的和大于0,且两根的积大于0,根据一元二次方程的根与系数的关系即可得到关于a的不等式,即可求得a的范围.
解答:解:(1)∵x+=3,
=x2+3+=(x+2+1,
=32+1=10,
=
(2)设方程的两个不相等的正根为x1、x2,则:
△=(-1)2-4(1-a)>0 ①,
x1+x2=1>0,x1x2=1-a>0 ②,
解①,得:a>
解②,得:a<1,
所以a的取值范围是<a<1.
点评:本题考查的是利用“整体代入法”求代数式的值及一元二次方程根与系数,锻炼了学生整体的思想意识.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2004•枣庄)如图,函数y=ax2+bx+c(其中a,b,c为常数)的图象分别与x轴,y轴交于A,B,C三点,M为抛物线的顶点,且AC⊥BC,OA<OB.
(1)试确定a,b,c的符号;
(2)求证:b2-4ac>4;
(3)当b=2时,M点与经过A,B,C三点的圆的位置关系如何?证明你的结论.注:y=ax2+bx+c的对称轴为,顶点为

查看答案和解析>>

科目:初中数学 来源:2004年山东省枣庄市中考数学试卷(解析版) 题型:解答题

(2004•枣庄)如图,函数y=ax2+bx+c(其中a,b,c为常数)的图象分别与x轴,y轴交于A,B,C三点,M为抛物线的顶点,且AC⊥BC,OA<OB.
(1)试确定a,b,c的符号;
(2)求证:b2-4ac>4;
(3)当b=2时,M点与经过A,B,C三点的圆的位置关系如何?证明你的结论.注:y=ax2+bx+c的对称轴为,顶点为

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(06)(解析版) 题型:填空题

(2004•枣庄)为改善市区人居环境,某市建设污水管网工程,已知圆柱形污水管的直径为50cm,截面如图所示,当管内污水的面宽AB=40cm时,污水的最大深度为    cm.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(05)(解析版) 题型:选择题

(2004•枣庄)如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为( )

A.20cm
B.20cm
C.10πcm
D.5πcm

查看答案和解析>>

科目:初中数学 来源:2002年广西桂林市中考数学试卷(解析版) 题型:选择题

(2004•枣庄)如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为( )

A.20cm
B.20cm
C.10πcm
D.5πcm

查看答案和解析>>

同步练习册答案