精英家教网 > 初中数学 > 题目详情
5.如图,在矩形ABCD中,AD=25,AB=12,点E、F分别是AD、BC上的点,且DE=CF=9,连接EF、DF、AF.取AF的中点为G,连接BG,将△BFG沿BC方向平移,当点F到达点C时停止平移,然后将△GFB绕C点顺时针旋转α(0°<α<90°),得到△B1CG1(点G的对应点为G1,点B的对应点为B1),在旋转过程中,直线B1G1与直线EF、FD分别相交M、N,当△FMN是等腰三角形,且FM=FN时,线段DN的长为$\frac{60-16\sqrt{10}}{5}$.

分析 如图,作FL⊥BG于L,FH⊥MN于H,CK⊥MN于K,CR⊥FH于R.FH交ED于T,作TQ⊥DF于Q,先求出FL、CK,设TE=TQ=x,在RT△TQD中,由TQ2+QD2=TD2,求出x,
由△FET∽△CFR,得$\frac{ET}{FR}$=$\frac{FT}{CF}$,求出RF,再由cos∠HFN=$\frac{FH}{FN}$=$\frac{EF}{TF}$,求出FN即可解决问题.

解答 解:如图,作FL⊥BG于L,FH⊥MN于H,CK⊥MN于K,CR⊥FH于R.FH交ED于T,作TQ⊥DF于Q.

∵四边形ABCD是矩形,
∴∠ABC=∠ADC=∠BCD=90°,AB=CD=12,AD=CF=25,
∵DE=CF=9,又∵DE∥CF,
∴四边形DEFC是平行四边形,
∵∠EDC=90°,
∴四边形DEFC是矩形,同理四边形AEFB是矩形,
∴DF=$\sqrt{C{F}^{2}+C{D}^{2}}$=$\sqrt{{9}^{2}+1{2}^{2}}$=15,AF=$\sqrt{A{B}^{2}+B{F}^{2}}$=$\sqrt{1{2}^{2}+1{6}^{2}}$=20,
∵G为AF的中点,
∴BG=$\frac{1}{2}$AF=10,
∵AG=GF,
∴S△BGF=$\frac{1}{2}$S△ABF=48=$\frac{1}{2}$•BG•LF,
∴FL=$\frac{48}{5}$,
∵CK=FL,
∴CK=$\frac{48}{5}$,
∵FM=FN,FH⊥MN,CK⊥MN,CR⊥FH,
∴∠RHK=∠HKC=∠KCR=90°,
∴四边形RHKC是矩形,
∴RH=CK=$\frac{48}{5}$,
∴∠MFH=∠NFH,
∴TE=TQ,设TE=TQ=x,
在RT△TQD中,∵TQ2+QD2=TD2
∴x2+32=(9-x)2
∴x=4,
∴FT=$\sqrt{E{F}^{2}+E{T}^{2}}$=4$\sqrt{10}$,
∵∠EFT+∠CFR=90°,∠CFR+∠FCR=90°,
∴∠EFT=∠FCR,∵∠FET=∠CFR=90°,
∴△FET∽△CFR,
∴$\frac{ET}{FR}$=$\frac{FT}{CF}$,
∴$\frac{4}{RF}$=$\frac{4\sqrt{10}}{9}$,
∴RF=$\frac{9\sqrt{10}}{10}$,
∴FH=FR+RH=$\frac{96+9\sqrt{10}}{10}$,
∵∠HFN=∠HFM,
∴cos∠HFN=$\frac{FH}{FN}$=$\frac{EF}{TF}$,
∴$\frac{\frac{96+6\sqrt{5}}{5}}{FN}$=$\frac{12}{6\sqrt{5}}$,
∴FN=$\frac{16\sqrt{10}+15}{5}$,
∴DN=DF-FN=$\frac{60-16\sqrt{10}}{5}$.
故答案为:$\frac{60-16\sqrt{10}}{5}$.

点评 本题考查几何变换综合题、矩形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会正确画出图形,学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年江西省下期九年级第一次月考数学试卷(解析版) 题型:判断题

如图,等边三角形ABC的边长为4,直线l经过点A并与AC垂直.点P从点A开始沿射线AM运动,连接PC,并将△ACP绕点C按逆时针方向旋转60°得到△BCQ,记点P的对应点为Q,线段PA的长为m(m≥0),当点Q恰好落在直线l上时,点P停止运动.

(1)在图①中,当∠ACP=20°时,求∠BQC的大小;

(2)在图②中,已知BD⊥l于点D,QE⊥l于点E,QF⊥BD于点F,试问:∠BQF的大小是否会随着点P的运动而改变?若不会,求出∠BQF的大小;若会,请说明理由.

(3)在图③中,连接PQ,记△PAQ的面积为S,请求出S与m的函数关系式(注明m的取值范围),并求出当m为何值时,S有最大值?最大值为多少?

查看答案和解析>>

科目:初中数学 来源:2016-2017学年广东省七年级下学期第一次月考数学试卷(解析版) 题型:判断题

的积中不含项,

(1)求的值;

(2)求代数式的值;

查看答案和解析>>

科目:初中数学 来源:2016-2017学年广东省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

,则等于( )

A. -5 B. -3 C. -1 D. 1

查看答案和解析>>

科目:初中数学 来源:2016-2017学年广东省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

下列各题中计算错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.因式分解:
(1)(a2+4)2-16a2   
(2)x2-5x-6
(3)(x+2)(x+4)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.分解因式:x2y-2xy2+y3=y(x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:$({\frac{{{x^2}+4}}{x}-4})÷\frac{{{x^2}-4}}{{{x^2}+2x}}$,其中x的值是方程x2+x=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.重庆育才中学九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为(  )
A.220B.218C.216D.209

查看答案和解析>>

同步练习册答案