精英家教网 > 初中数学 > 题目详情
我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出
MM′N′N
的值(用含α的三角函数表示).
精英家教网
分析:(1)证线段相等,可证线段所在的三角形全等.结合本题,证△MM′E≌△NN′F即可;
(2)由于M′E∥CD,则∠EM′M=∠FNN′=α,易证得△FNN′∽△EM′M,那么MM′:NN′=EM′:FN;而EM′=FN′,则比例式可化为:
MM′
NN′
=
FN′
FN
=tanα,由此可知:当α=45°时,MM′=NN′;当α≠45°时,MM′≠NN′.
解答:(1)解:在方形环中,
∵M'E⊥AD,N'F⊥BC,AD∥BC,
∴M'E=N'F,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF,
∴△MM'E≌△NN'F.
∴MM'=N'N;(5分)

(2)解法一:∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,
∴△NFN'∽△M'EM.                                          (8分)
MM′
N′N
=
M′E
NF

∵M'E=N'F,
MM′
N′N
=
N′F
NF
=tanα
(或
sinα
cosα
).                           (10分)
①当α=45°时,tanα=1,则MM′=NN′;
②当α≠45°时,MM′≠NN′,
MM′
NN′
=tanα
(或
sinα
cosα
).                                 (12分)
解法二:在方形环中,∠D=90°,
又∵M′E⊥AD,N′F⊥CD,
∴M′E∥DC,N′F=M′E.
∴∠MM′E=∠N′NF=α.
在Rt△NN′F与Rt△MM′E中,
sinα=
N′F
NN′
,cosα=
M′E
MM′
tanα=
sinα
cosα
=
N′F
NN′
MM′
M′E
=
MM′
NN′

MM′
NN′
=tanα
(或
sinα
cosα
).                                   (10分)
①当α=45°时,MM′=NN′;
②当α≠45°时,MM′≠NN′,则
MM′
NN′
=tanα
(或
sinα
cosα
).          (12分)
点评:此题主要考查了相似三角形、全等三角形的判定和性质以及解直角三角形的应用等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,已知方形环四周的宽度相等,如图,若直线l分别交方形环的邻边AD、A'D'、D'C'、DC于点M、M'、N'、N,且M为AD的中点,DN=3CN,则线段MM'与NN'的长度之比为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>

科目:初中数学 来源:2012届江苏省第三初级中学九年级课程结束考试数学卷 题型:解答题

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省九年级课程结束考试数学卷 题型:解答题

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;

⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若     相等,说明理由;若不相等,求出的值(用含的三角函数表示).

 

查看答案和解析>>

同步练习册答案