【题目】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,
(1)把圆片沿数轴向右滚动1周,点A到达数轴上点B的位置,点B表示的数是 数(填“无理”或“有理”),这个数是 .
(2)把圆片沿数轴滚动3周,点A到达数轴上点C的位置,点C表示的数是 .
(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3
①第 次滚动后,A点距离原点最近,第 次滚动后,A点距离原点最远?
②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?
【答案】(1)无理,2π;(2)6π或﹣6π;(3)①4,3;②A点运动的路程共有26π,此时点A所表示的数是:﹣6π.
【解析】试题分析:(1)利用圆的半径以及滚动周数即可得出滚动距离;
(2)利用圆的半径以及滚动周数即可得出滚动距离;
(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;
②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.
试题解析:(1)把圆片沿数轴向右滚动1周,点A到达数轴上点B的位置,点B表示的数是无理数,这个数是2π;
(2)把圆片沿数轴滚动3周,点A到达数轴上点C的位置,点C表示的数是6π或-6π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3,
∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远,②∵|+2|+|-1|+|+3|+|-4|+|-3|=13,
∴13×2π×1=26π,
∴A点运动的路程共有26π;
∵(+2)+(-1)+(+3)+(-4)+(-3)=-3,
(-3)×2π=-6π,
∴此时点A所表示的数是:-6π.
科目:初中数学 来源: 题型:
【题目】如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.
(1)求证:四边形EFGH是平行四边形;
(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降1元,其销量可增加10件。
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校准备在初二年级的四名同学中选拔一名参加我市“风采小主持人”大赛,选拔赛中每名学生的平均成绩及方差如表所示,若要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )
甲 | 乙 | 丙 | 丁 | |
平均成绩 | 8 | 9 | 9 | 8 |
方差 | 1 | 1 | 1.2 | 1.3 |
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若A(﹣1,y1),B(﹣5,y2),C(0,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1 , y2 , y3的大小关系是( )
A.y1<y2<y3
B.y2<y1<y3
C.y3<y1<y2
D.y1<y3<y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com